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1. Introduction
In March 2001, the National Security Agency (NSA) gave a presentation about Security-Enhanced Linux
(SELinux) at the 2.5 Linux Kernel Summit. SELinux is an implementation of flexible and fine-grained
nondiscretionary access controls in the Linux kernel, originally implemented as its own particular kernel
patch. The design and implementation of the original SELinux prototype is described in
[LoscoccoFreenix2001] and [LoscoccoNSATR2001], both of which can be found at the NSA SELinux
web site (http://www.nsa.gov/selinux).
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In response to the NSA presentation, Linus Torvalds made a set of remarks that described a security
framework he would be willing to consider for inclusion in the mainstream Linux kernel. He described a
general framework that would provide a set of security hooks to control operations on kernel objects and
a set of opaque security fields in kernel data structures for maintaining security attributes. This
framework could then be used by loadable kernel modules to implement any desired model of security.

The Linux Security Modules (LSM) project was started by WireX to develop such a framework. LSM is
a joint development effort by several security projects, including Immunix, SELinux, SGI and Janus, and
several individuals, including Greg Kroah-Hartman and James Morris, to develop a Linux kernel patch
that implements this framework. The LSM patch is currently tracking the 2.4 series and is targeted for
integration into the 2.5 development series. The LSM kernel patch is available from the LSM web site
(http://lsm.immunix.org). A brief overview of the LSM framework is available in the
Documentation/DocBook/lsm.tmpl file in the LSM-patched kernel tree, and detailed documentation
for each LSM hook is available in theinclude/linux/security.h file in the same tree.

The SELinux implementation has been reworked by NAI Labs to use the LSM patch rather than its own
particular kernel patch. This technical report documents the LSM-based SELinux security module. The
report begins by providing an overview of LSM and a review of the SELinux basic concepts. It then
provides an overview of how the LSM-based SELinux security module differs from the original SELinux
kernel patch. Several aspects of the SELinux security module are then described, including its internal
architecture, its initialization and exit code, its support for stacking with other security modules, and its
approach for implementing the new SELinux system calls. The remainder of the report is then spent
documenting the SELinux hook function implementations, organized into sections for each grouping of
LSM hooks. Typically, these hooks are grouped based on the relevant kernel object or kernel subsystem.

2. Acknowledgements
We thank James Morris for his contributions to the SELinux security module and for his independent
development of CIPSO/FIPS188 packet labeling for SELinux. We thank the other contributors to the
LSM kernel patch for their work, particularly Chris Wright, Greg Kroah-Hartman, James Morris, Serge
Hallyn, and Lachlan McIlroy. We also thank the users of SELinux for their feedback on the LSM-based
SELinux releases.

3. LSM Overview
This section provides an overview of the Linux Security Modules (LSM) kernel patch. This section
contains an edited excerpt from theDocumentation/DocBook/lsm.tmpl file in the LSM-patched
kernel tree.

The LSM kernel patch provides a general kernel framework to support security modules. In particular,
the LSM framework is primarily focused on supporting access control modules, although future
development is likely to address other security needs such as auditing. By itself, the framework does not
provide any additional security; it merely provides the infrastructure to support security modules. The
LSM kernel patch also moves most of the capabilities logic into an optional capabilities security module,
with the system defaulting to a dummy security module that implements the traditional superuser logic.

The LSM kernel patch adds security fields to kernel data structures and inserts calls to hook functions at
critical points in the kernel code to manage the security fields and to perform access control. It also adds
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functions for registering and unregistering security modules, and adds a generalsecurity system call
to support new system calls for security-aware applications.

The LSM security fields are simply void* pointers. For process and program execution security
information, security fields were added to struct task_struct and struct linux_binprm. For filesystem
security information, a security field was added to struct super_block. For pipe, file, and socket security
information, security fields were added to struct inode and struct file. For packet and network device
security information, security fields were added to struct sk_buff and struct net_device. For System V
IPC security information, security fields were added to struct kern_ipc_perm and struct msg_msg;
additionally, the definitions for struct msg_msg, struct msg_queue, and struct shmid_kernel were moved
to header files (include/linux/msg.h andinclude/linux/shm.h as appropriate) to allow the
security modules to use these definitions.

Each LSM hook is a function pointer in a global table, security_ops. This table is a security_operations
structure as defined byinclude/linux/security.h . Detailed documentation for each hook is
included in this header file. At present, this structure consists of a collection of substructures that group
related hooks based on the kernel object (e.g. task, inode, file, sk_buff, etc) as well as some top-level
hook function pointers for system operations. This structure is likely to be flattened in the future for
performance. The hook calls can be easily found in the kernel code by looking for the string
"security_ops->".

The global security_ops table is initialized to a set of hook functions provided by a dummy security
module that provides traditional superuser logic. Aregister_security function (in
security/security.c ) is provided to allow a security module to set security_ops to refer to its own
hook functions, and anunregister_security function is provided to revert security_ops to the
dummy module hooks. This mechanism is used to set the primary security module, which is responsible
for making the final decision for each hook.

LSM also provides a simple mechanism for stacking additional security modules with the primary
security module. It definesregister_security andunregister_security hooks in the
security_operations structure and providesmod_reg_security andmod_unreg_security functions
that invoke these hooks after performing some sanity checking. A security module can call these
functions in order to stack with other modules. However, the actual details of how this stacking is
handled are deferred to the module, which can implement these hooks in any way it wishes (including
always returning an error if it does not wish to support stacking). In this manner, LSM defers the
problem of composition to the module.

Although the LSM hooks are organized into substructures based on kernel object, all of the hooks can be
viewed as falling into two major categories: hooks that are used to manage the security fields and hooks
that are used to perform access control. Examples of the first category of hooks include the
alloc_security andfree_security hooks defined for each kernel data structure that has a security
field. These hooks are used to allocate and free security structures for kernel objects. The first category of
hooks also includes hooks that set information in the security field after allocation, such as the
post_lookup hook in struct inode_security_ops. This hook is used to set security information for
inodes after successful lookup operations. An example of the second category of hooks is the
permission hook in struct inode_security_ops. This hook checks permission when accessing an inode.

LSM adds a generalsecurity system call that simply invokes thesys_security hook. This system
call and hook permits security modules to implement new system calls for security-aware applications.
The interface is similar to socketcall, but also has anid to help identify the security module whose call
is being invoked.
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4. SELinux Basic Concepts
This section provides an overview of the SELinux basic concepts. More background information about
SELinux can be found in [LoscoccoFreenix2001].

SELinux is based on the Flask security architecture for flexible nondiscretionary access controls. This
architecture was previously implemented in the Fluke research operating system, as described in
[SpencerUsenixSec1999]. The Flask security architecture provides a clean separation between the policy
enforcement code and the policy decision-making code. The policy decision-making code is
encapsulated in a separate component of the operating system called the security server. The Flask
security architecture includes an access vector cache (AVC) component that provides caching of access
decision computations obtained from the security server to minimize the performance overhead of the
SELinux access controls. The policy enforcement code is integrated into the subsystems (e.g. the process
management code, the filesystem code, the socket and networking code, and the IPC code) of the
operating system. The policy enforcement code obtains security policy decisions from the security server
and AVC, and applies those decisions to assign security labels to processes and objects and to control
operations based on those security labels.

Since different security policies require different kinds of security attributes, the Flask security
architecture provides two policy-independent data types for security labels: the security context and the
security identifier (SID). A security context is a string representation of a security label, while a SID is a
local, non-persistent integer that is mapped by the security server to a security context. Both SIDs and
security contexts are handled opaquely by the policy enforcement code and can only be interpreted by
the security server. The policy enforcement code binds SIDs to active processes and objects, consulting
the security server when a SID needs to be computed for a new subject or object. The policy enforcement
code in the filesystem code also maintains a persistent label mapping in each filesystem that maps inodes
to integer persistent security identifiers (PSIDs) and maps PSIDs to security contexts.

The policy enforcement code consults the AVC to check permissions for operations, passing a pair of
SIDs and a security class; the AVC obtains access decisions from the security server as needed. The pair
of SIDs are referred to as a source SID and a target SID. Typically, the source SID is the SID of a process
and the target SID is the SID of another process or an object, but it is also possible for permissions to be
defined between two objects to control relationships among objects. The security class identifies the kind
of object. Each security class has an associated set of permissions that are used to control access to that
object. These permission sets are represented by a bitmap called an access vector.

In addition to returning a decision for the permission check, the AVC returns a reference to the entry in
the cache that contained the decision. The policy enforcement code can save this reference with the
object and provide it as a hint on subsequent permission checks to optimize the lookup. These references
are referred to as AVC entry references. The references are revalidated on use, so if the SID of the subject
or object has changed or if the referenced entry has been invalidated due to a policy change, the AVC will
look up the correct entry or obtain a new one from the security server and return an updated reference.

5. Changes from the Original SELinux Kernel Patch
This section summarizes the changes between the original SELinux kernel patch and the LSM-based
SELinux security module. At a high level, the LSM-based SELinux security module provides equivalent
security functionality to the original SELinux kernel patch. However, there have been some changes to
the specific controls, partly driven by design constraints imposed by LSM and partly based on further
review of the original SELinux controls. There have also been significant changes in the underlying
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implementation, likewise partly driven by differences in LSM and partly based on a review of the original
SELinux implementation. The following subsections summarize the changes, grouped by category.

5.1. General Changes

This subsection describes general changes between the original SELinux kernel patch and the
LSM-based SELinux security module. These changes include adding a new level of indirection,
dynamically allocating security fields, handling pre-existing subjects and objects, stacking with the
capabilities module, reimplementing the extended system calls, and leveraging the existing Linux
functions for checking permissions.

5.1.1. Adding a New Level of Indirection

The original SELinux kernel patch provided clean separation between the policy enforcement code and
the policy decision-making code by using the Flask security architecture and interfaces. The policy
enforcement code was directly inserted into the kernel code at appropriate points, and the policy
decision-making code was encapsulated in the security server, with a well-defined interface between the
two components. Similarly, policy-independent data types for security information were directly inserted
into kernel data structures, and only the security server could interpret these data types. This level of
separation permitted many different kinds of nondiscretionary access control policies to be implemented
in the security server without any changes to the policy enforcement code.

The LSM kernel patch inserts calls to hook functions on kernel objects into the kernel code at
appropriate points, and it inserts void* security fields into the kernel data structures for kernel objects. In
the LSM-based SELinux security module, the policy enforcement code is implemented in the hook
functions, and the policy-independent data types are stored using the security fields in the kernel data
structures. Internally, the SELinux code continues to use the Flask architecture and interfaces, and the
security server remains as a separate component of the module. Hence, LSM introduces an additional
level of indirection for the SELinux code and data. The internal architecture of the SELinux security
module is discussed further inSection 6.

5.1.2. Dynamically Allocating Security Fields

In the original SELinux kernel patch, fields for security data were inserted directly into the appropriate
kernel objects and were allocated and freed with the kernel object. Since LSM inserts only a single void*
security field into each kernel object, the LSM-based SELinux security module must manage a
dynamically allocated security structure for each kernel object unless it only needs to store a single word
of security data. At present, the SELinux security module does directly store a single word (a single SID)
in the security field of one of the kernel data structures, the struct linux_binprm structure, but this may be
changed in the future. This is discussed further inSection 12.1. The SELinux security module uses a
dynamically-allocated security structure for the security fields of the other kernel data structures.

5.1.3. Handling Pre-Existing Subjects and Objects

With the original SELinux kernel patch, it was possible to ensure that all subjects and objects are labeled
when they are initialized or created. The LSM-based SELinux security module must handle subjects and
objects in the system that were created prior to module initialization. Some tasks and objects (e.g. the
procfs root inode) are created prior to module initialization even when the module is compiled into the
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kernel, so there are always some pre-existing subjects and objects that must be handled. When the
module is dynamically loaded into a kernel, the situation is even more complicated.

The LSM-based SELinux security module addresses this problem by defining a precondition function for
each kernel object that dynamically handles the allocation and initialization of the corresponding security
structure if it is not already set, and by calling this precondition function prior to any attempts to
dereference the security field. These functions are described in general inSection 10.2and in more detail
in the individual hook subsections. However, these functions can not always retroactively determine the
correct security information for a pre-existing subject or object, so it is recommended that the SELinux
security module always be built into the kernel.

5.1.4. Stacking with the Capabilities Module

The original SELinux kernel patch added the SELinux nondiscretionary access controls as additional
restrictions to the existing Linux access control logic. This left the existing Linux logic intact and
unchanged, including the discretionary access control logic and the capabilities logic. LSM moves most
of the capabilities logic into an optional capabilities security module and provides a dummy security
module that implements traditional superuser logic. Hence, the LSM-based SELinux security module
provides support for stacking with either the capabilities module or the dummy module. Since some
existing applications (e.g. named, sendmail) expect capabilities to be present in Linux, it is
recommended that the SELinux module always be stacked with the capabilities module. The stacking
support is discussed further inSection 8.

5.1.5. Reimplementing the Extended System Calls

In the original SELinux kernel patch, extended system calls such asexecve_secure and
stat_secure were implemented by extending the internal kernel functions to optionally pass and
process SID parameters. In the LSM-based SELinux security module, these extended system calls were
implemented by passing SID parameters to and from the hook functions via fields in the current task’s
security structure. This is discussed further inSection 9.

5.1.6. Leveraging Linux Permission Functions

The original SELinux kernel patch directly inserted its own permission checks throughout the kernel
code rather than trying to leverage existing Linux permission functions such aspermission and
ipcperms due to the coarse-grained permissions supported by these functions and the need to perform
permission checks in many locations where no Linux check already existed. The one notable exception
to this practice in the original SELinux kernel patch was the insertion of a SELinux permission check
into the existingcapable kernel function so that SELinux could perform a parallel check for the large
number of existing calls tocapable .

In contrast, LSM inserts hook calls into all of the existing Linux permission functions in order to
leverage these functions. In some cases, LSM also inserts additional hook calls in specific operations to
provide finer-grained control, but in other cases, it merely relies on a hook in one of the existing Linux
permission functions to control an operation. The LSM-based SELinux security module uses the hooks
in the existing Linux permission functions to perform a parallel check for each Linux permission check.
These parallel checks for the Linux permission checks ensure that every Linux access control is also
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controlled by SELinux. They also reduce the risk that future changes to Linux will introduce operations
that are completely uncontrolled by SELinux.

Using these hooks required defining some additional coarse-grained permissions for SELinux. These
permissions are discussed further inSection 5.3.3and inSection 5.5.2. Whenever possible, the
LSM-based SELinux security module leverages these hooks to provide control. When SELinux requires
finer-grained control, the module implements these finer-grained SELinux controls using the additional
LSM hooks.

5.2. Program Execution Changes

This subsection describes general changes between the original SELinux kernel patch and the
LSM-based SELinux security module related to program execution. These changes include replacing the
processexecute permission with a new fileexecute_no_trans permission, changing the file
descriptor inheritance controls, and changing the controls over process tracing and state sharing when a
new program is executed. Each of these changes is described below.

5.2.1. File execute_no_trans Permission

In the original SELinux kernel patch, the fileexecute permission controlled the ability to initiate the
execution of a program, while the processexecute permission controlled the ability to execute code
from an executable image. The distinction was necessary because the SID of a task can be changed by
program execution, so the SID of the initiator may differ from the SID of the transformed process.
However, the processexecute permission was redundant with the processentrypoint permission
when the SID of the task was changing, so it only served a useful purpose when the task SID was left
unchanged. Furthermore, since this permission was between a task SID and a program file SID, it
properly belonged in the file class, not the process class.

Hence, the processexecute permission was replaced by a new fileexecute_no_trans permission in
the LSM-based SELinux security module. Unlike the original processexecute permission, the file
execute_no_trans permission is only checked when the SID of the task would remain unchanged.
The processentrypoint permission was also moved into the file class for consistency. The file
execute and processtransition permissions were left unchanged. These checks are described
further inSection 12.1.2.

5.2.2. File Descriptor Inheritance

The file descriptor inheritance permission checks during program execution were revised for the
LSM-based SELinux security module. This is discussed inSection 5.3.4.

5.2.3. Process Tracing and State Sharing

In the original SELinux kernel patch, checks for process tracing and sharing process state when the SID
was changed were inserted into thecompute_creds kernel function with the existing Linux tests for
these conditions for setuid programs. However, this function can not return an error, so SELinux merely
left the task SID unchanged if these checks failed, just as Linux leaves the uid unchanged if its tests fail.
Additionally, the original SELinux kernel patch used a hardcoded test for process 1 to permit the kernel
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to transition to a new SID forinit even though it was sharing state. In the LSM-based SELinux security
module, the ptrace and share checks were changed to also send a SIGKILL to the task to terminate it
upon a permission failure, and a new processshare permission was added to provide configurable
control over process state sharing across SID transitions. This is described further inSection 12.1.3.

5.3. Filesystem Changes

This subsection describes changes between the original SELinux kernel patch and the LSM-based
SELinux security module related to the filesystem. These changes include extending the persistent label
mapping to be filesystem-independent, reimplementing file labeling support for pseudo filesystem types,
leveraging the hook in the existingpermission function, revising the file descriptor permission checks,
changing theopen_secure interface, and eliminating the pipe security class. Each change is described
below.

5.3.1. Persistent Labeling

In the original SELinux kernel patch, the persistent label mapping in each filesystem stored a mapping
from persistent security identifiers (PSIDs) to security contexts, and a PSID was stored in a spare field of
the on-disk ext2 inode. Since LSM provides all of its file-related hooks in the VFS layer and does not
provide any filesystem-specific hooks, the SELinux persistent label mapping was changed to maintain
the inode-to-PSID mapping in a regular file rather than using a spare field in the ext2 on-disk inode. This
change should allow SELinux to support other file system types more easily, but has disadvantages in
terms of performance and consistency. Naturally, if support for extended attributes becomes integrated
into the mainstream Linux kernel, SELinux will be modified to take advantage of it when extended
attributes are supported by the filesystem.

5.3.2. Pseudo Filesystem Labeling

In the original SELinux kernel patch, code was directly inserted into the procfs and devpts pseudo
filesystem implementations to provide appropriate file labeling behaviors. Since LSM does not provide
filesystem-specific hooks, the LSM-based SELinux security module had to reimplement this
functionality using the hooks in the VFS layer. In addition to reimplementing the labeling functionality
for these filesystem types, labeling support for the tmpfs and devfs filesystems was also added to the
LSM-based SELinux security module. The handling for these pseudo filesystem types is described in
Section 14.1.3.

5.3.3. Leveraging permission

As discussed inSection 5.1.6, LSM inserts a hook into the existing Linux functions for permission
checking, including thepermission function for checking access to objects represented by inodes. The
LSM-based SELinux security module leverages this hook to perform a parallel check for each existing
Linux inode permission check. The use of this hook posed a problem for preserving the SELinux
distinction between opening a file with append access vs. opening a file with write access, requiring an
additional change to the Linux kernel that was incorporated into the LSM kernel patch.

The use of this hook also posed a problem for the SELinux directory permissions, which partition
traditional write access into separate permissions for adding entries (add_name), removing entries
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(remove_name ), and reparenting the directory (reparent ). Since these distinctions are not possible in
theselinux_inode_permission hook called by thepermission kernel function, a directorywrite

permission was added to SELinux. This permission is checked by this hook when write access is
requested, and the finer-grained directory permissions are checked by the additional hooks that are called
when a directory operation is performed.

Hence, directory modifications require both awrite permission and the appropriate finer-grained
permission to the directory. Whenever one of the finer-grained permissions is granted in the policy, the
write permission should also be granted in the policy. Thewrite permission check on directories could
be omitted, but it is present to ensure that all directory write accesses are controlled by SELinux.

5.3.4. File Descriptor Permissions

In the original SELinux kernel patch, distinct file descriptor permissions were defined for getting the file
offset or flags (getattr ), setting the file offset or flags (setattr ), inheriting the descriptor across an
execve (inherit ), and receiving the descriptor via socket IPC (receive ). These permissions were
reduced to a singleuse permission in the LSM-based SELinux security module that is checked
whenever the descriptor is inherited, received, or used.

Additionally, in the original SELinux kernel patch, only theinherit or receive permissions were
checked when a descriptor was inherited or received. The other descriptor permissions and the
appropriate file permissions were only checked when an attempt was made to use the descriptor. In the
LSM-based SELinux security module, theuse permission and the appropriate file permissions are
checked whenever the descriptor is inherited, received, or used.

These changes to the SELinux file descriptor permission checks bring SELinux into conformity with the
base Linux control model, where possession of a descriptor implies the right to use it in accordance with
its mode and flags. This reduces the risk of misuse of a descriptor by a process, and also reduces the risk
that future changes to Linux will open vulnerabilities in the SELinux control model. With these changes,
the SELinux permission checks on calls such asread andwrite are only necessary to support
revocation of access for relabeled files or policy changes.

5.3.5. open_secure Interface

In the original SELinux kernel patch, theopen_secure system call had two optional SID parameters,
one to specify the SID of the file when a file is created and one to specify the SID of the file descriptor.
However, calls such asstat_secure only returned the SID of the file, not the file descriptor, and no
calls were provided to change the SID of an existing descriptor. For the LSM-based SELinux security
module, file descriptors always inherit the SID of the opening process, and theopen_secure system call
only takes a single SID parameter to specify the SID of a new file. Hence, SIDs on file descriptors are
completely invisible to applications, but are still used to control shared access to the file offset and flags.

5.3.6. Pipe Security Class

In the original SELinux kernel patch, a separate security class was defined for pipes, although this
security class merely inherited the common file permissions. In the LSM-based SELinux security
module, this class was eliminated, and thefifo_file security class is used for both pipes and for
named FIFOs. This has no impact on the ability to control pipe operations distinctly, since pipes are still
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labeled with the SID of the creating task while named FIFOs are labeled in the same manner as other
files.

5.4. Socket IPC and Networking Changes

This subsection describes changes between the original SELinux kernel patch and the LSM-based
SELinux security module related to socket IPC and networking. These changes include storing socket
security information in the associated inode security field, reimplementing the SELinux access controls
using minimally invasive hooks, changing the file descriptor transfer controls, omitting some of the
low-level ioctl controls, and implementing the extended socket calls.

5.4.1. Storing Socket Security Data

The original SELinux kernel patch added security fields to the sock structure for socket security data,
and also mirrored the SID and security class of the socket in the inode structure associated with the
socket. LSM also provides a security field within the kernel socket data structure, and SELinux uses this
field to store security data for new connections during connection setup, when no user socket (and no
inode) is available yet. However, the LSM-based SELinux security module stores the socket security data
in the security field of the associated inode once the user socket is established. This is discussed further
in Section 17andSection 19.

5.4.2. Minimally Invasive Hooks

Since the original SELinux kernel patch added security fields to the lower-level struct sock structure,
most of the SELinux changes were inserted directly into the specific protocol family implementations
(e.g. the AF_INET and AF_UNIX code). The original SELinux kernel patch was fairly invasive in
inserting SELinux processing throughout the protocol family implementations, and did not try to
leverage the existing Linux packet filtering support.

LSM provides a set of hooks in the abstract socket layer for controlling socket operations at a high level,
and leverages the Linux NetFilter support for hooking network operations. The LSM-based SELinux
security module implements as many of the SELinux socket and network controls as possible using these
socket layer hooks and NetFilter-based hooks. Hence, NetFilter support should be enabled in the kernel
configuration when using SELinux. The SELinux network access controls required one additional hook
(sock_rcv_skb ) in two locations for controlling connection establishment and packet receipt on a
socket. Another hook was added (tcp_create_openreq_child so that security data can be saved in
the struct sock during connection establishment.

For the SELinux Unix domain IPC controls, the LSM-based SELinux security module leverages the
hooks in the existing Linux permission functions but also required two additional hooks in the Unix
domain protocol implementation due to the abstract namespace. These three additional hooks have been
accepted into the LSM kernel patch, so the LSM hooks are adequate for SELinux. The SELinux socket
access controls are described inSection 17.3and the SELinux network layer access controls are
described inSection 19.
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5.4.3. File Descriptor Transfer

The file descriptor transfer permission checks during socket IPC were revised for the LSM-based
SELinux security module. This is discussed inSection 5.3.4.

5.4.4. Omitting Low-Level ioctl Controls

In the original SELinux kernel patch, a small set of controls were implemented in low-levelioctl

routines to support fine-grained control over configuring network devices, accessing the kernel routing
table, and accessing the kernel ARP and RARP tables. During the development of LSM, the feasibility of
providing hooks to support these controls was explored, but it was determined that providing hooks in
every location necessary to control configuring network devices would be too invasive, and the other
controls offered little benefit over the existingcapable calls. Hence, the LSM-based SELinux security
module does not implement these controls, and control over these operations is handled based on the
capable calls.

5.4.5. Extended Socket Calls

In the original SELinux kernel patch, a set of extended socket calls were implemented. The
implementation of these calls for the LSM-based SELinux module is not yet complete and several
unresolved issues still remain. A separate kernel configuration option has been defined for these calls and
the corresponding hook function processing. Disabling this option has no impact on the enforcement of
the network policy by the kernel, and no applications have been modified yet to use these calls, so the
option can be disabled without harm. It is expected that further changes to the LSM kernel patch will be
necessary to fully support the extended socket calls. The extended socket call processing is discussed
further inSection 9andSection 17.4.

5.5. System V IPC Changes

This subsection describes changes between the original SELinux kernel patch and the LSM-based
SELinux security module related to System V IPC. Since the System V IPC security enhancements were
never ported from the 2.2 series to the 2.4 series prior to the transition to using LSM, the LSM-based
SELinux security module had to adapt the implementation of the SELinux security enhancements to the
2.4 series. In addition to this adaptation, the changes include an easier solution for storing the IPC
security data and leveraging the hook in the existingipcperms function.

5.5.1. Storing IPC Security Data

In the original SELinux kernel patch for the 2.2 series, it was difficult to add security data to the
semaphore and message queue structures because the kernel exported the same data structure that it used
internally to applications. Hence, the original SELinux kernel patch wrapped these data structures with
private kernel data structures that contained both the original structure and the additional security data.
This required extensive changes to the IPC code to dereference fields in the original structure. In the 2.4
series, the IPC code was rewritten to use private kernel data structures for all of the IPC objects, and each
of these structures included a struct kern_ipc_perm structure with common information. Hence, LSM
was able to add a single security field to this common structure and a single security field to the structure
for individual messages. This is discussed further inSection 16.1.
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5.5.2. Leveraging ipcperms

As discussed inSection 5.1.6, LSM inserts a hook into the existing Linux functions for permission
checking, including theipcperms function for checking access to IPC objects. The LSM-based
SELinux security module leverages this hook to perform a parallel check for each existing Linux IPC
permission check. However, since the SELinux IPC permissions are much finer-grained than the Linux
concepts of read or write access to IPC objects, newunix_read andunix_write permissions were
defined to correspond with the Linux permissions. These new permissions are checked by the hook
called byipcperms , and the finer-grained SELinux permissions are checked by the other IPC hooks.
Hence, IPC operations require theunix_read or unix_write permission and the appropriate
finer-grained permission. The coarse-grained permission checks could be omitted, but they are present to
ensure that all IPC accesses are controlled by SELinux. These checks are discussed inSection 16.2.2.

5.6. Miscellaneous Changes

In addition to the changes described above, the LSM-based SELinux security module had to
reimplement the approach for controlling thesysctl call, as described inSection 23.3. It also added
new controls for some system operations that were not specifically addressed in the original SELinux
kernel patch. New controls have been defined forquotactl , syslog , swapon , nfsservctl , and
bdflush . These controls are discussed inSection 23. In the original SELinux kernel patch, these
operations were merely controlled via the coarse-grainedcapable controls.

6. Internal Architecture
This section provides an overview of the SELinux security module internal architecture. The module
code is located within thesecurity/selinux subdirectory of the kernel tree. All subsequent
pathnames in this section are relative to this subdirectory, unless otherwise noted. The module consists of
five major components: the security server, the access vector cache (AVC), the persistent label mapping,
the new system calls, and the hook function implementations.

The security server provides general interfaces for obtaining security policy decisions, enabling the rest
of the module to remain independent of the specific security policies used. The specific implementation
of the security server can be changed or completely replaced without requiring any changes to the rest of
the module. The example security server provided with SELinux implements a combination of
Role-Based Access Control (RBAC), a generalization of Type Enforcement (TE), and optionally
Multi-Level Security (MLS). The RBAC and TE policies are highly configurable and can be used to
meet many different security objectives. The example security server code can be found in thess

subdirectory. This code is largely unchanged from the original SELinux prototype, aside from some bug
fixes, synchronization code, and preliminary devfs labeling support.

The AVC provides caching of access decision computations obtained from the security server to
minimize the performance overhead of the SELinux security mechanisms. It provides interfaces to the
hook functions for efficiently checking permissions and it provides interfaces to the security server for
managing the cache. The AVC code can be found in theavc.c file. This code is also largely unchanged
from the original SELinux prototype.
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The persistent label mapping provides a mechanism for maintaining security contexts with persistent
objects such as files and filesystems. It provides interfaces to the hook functions for getting and setting
the security contexts for particular files. The persistent label mapping code can be found in thepsid.c

file. This code was derived from the original SELinux prototype, but was changed to store the
inode-to-PSID mapping in a regular file rather than using a spare field in the on-disk inode, since LSM
does not provide filesystem-specific hooks. This change should allow SELinux to support other
filesystem types more easily, but has disadvantages in terms of performance and consistency.
Additionally, several bug fixes were made and some new synchronization code was added.

The new system calls allow modified and new applications to be developed that have some degree of
awareness of the new security features. One set of new calls is provided to allow applications to use the
security server interfaces to obtain policy decisions for their own objects. The code for these calls can be
found in thess/syscalls.c file and is largely unchanged from the original SELinux prototype.

The other new system calls are typically extended forms of existing system calls that allow applications
to obtain or specify security contexts for kernel objects or operations. The code for these calls can be
found in thesyscalls.c andinclude/asm-i386/flask/syscalls.c files. This code uses a
different approach than the original SELinux prototype, which relied on the ability to generalize the
existing internal kernel functions to support this functionality by directly patching it. The new code
instead makes use of the existing system calls in combination with the ability to save state in the new
security fields and the processing in the hook functions.

The hook function implementations manage the security information associated with kernel objects and
perform the SELinux access controls for each kernel operation. The hook functions call the security
server and access vector cache to obtain security policy decisions and apply those decisions to label and
control kernel objects. The hook functions also call the persistent label mapping to obtain and set security
contexts on files. The code for these hook functions is located in the filehooks.c , and the data structures
for the security information associated with the kernel objects are defined in the fileselinux_plug.h .

Abstractly, the hook function and data structure contents can be viewed as the same processing and data
that was directly inserted into the kernel code and data structures by the original SELinux patch.
However, in practice, it was often necessary to revisit the approach used by the original SELinux patch
since the LSM hook locations did not always correspond to the insertion points of the original SELinux
patch. In part, this was because the LSM project placed a heavier emphasis on minimizing hooks,
especially outside of the core kernel code. For example, the lack of any filesystem-specific hooks
required a different approach for labeling both persistent filesystems like ext2 and pseudo filesystems
like procfs. Similarly, since LSM leverages the existing NetFilter framework to support hooking on many
network operations, the implementation of the SELinux network access controls was changed.
Nonetheless, it was possible to provide the desired security semantics with the LSM hooks.

7. Initialization and Exit
This section describes the initialization and exit code for the SELinux security module. The initialization
code is in theselinux_plug_init function in thehooks.c file. The exit code is in the
selinux_plug_exit function in the same file.

7.1. selinux_plug_init

This function starts by initializing the secondary security module to the original security module,
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typically the dummy module, to support stacking with the dummy or capabilities modules. This is
discussed further inSection 8. It then calls theavc_init function to initialize the AVC. This
initialization must be done prior to any permission checking calls to the AVC.

If SELinux is built as a separate module (not recommended), thesecurity_init is then called to
initialize the security server and load the initial security policy configuration. If SELinux is built into the
kernel, then the root filesystem has not been mounted yet, so the call tosecurity_init is deferred to
thepost_mountroot hook in that case.

Next, theselinux_plug_init function inserts thesys_security_selinux function into the system
call table in place of the LSMsys_security function. This is necessary to support the
execve_secure system call, which requires access to the registers on the stack, as discussed inSection
9. Finally, this function calls the LSMregister_security function to register the SELinux security
module as the primary security module for LSM.

7.2. selinux_plug_exit

This function starts by calling the LSMunregister_security function to unregister the SELinux
security module. It then restores the entry in the system call table used forexecve_secure . Finally, it
frees all of the security data structures associated with kernel objects. However, at present, this function
does not free the memory associated with the AVC or the security server. Since these two components
were permanently resident in the kernel in the original SELinux prototype, they do not currently provide
interfaces for freeing their memory. This would not be difficult to add, but has not been a high priority
since currently the SELinux module is built into the kernel.

8. Stacking with Other Modules
This section describes the current support for stacking SELinux with other security modules. LSM
provides only minimal support for stacking security modules, providing hooks for this purpose but
deferring the details of how stacking is handled to the primary security module. At present, the SELinux
security module only functions as a primary security module and provides minimal support for using
either the dummy security module (traditional superuser logic) or the capabilities security module as a
secondary security module. This allows SELinux to be combined with either the traditional superuser
logic or with the Linux capabilities logic. SELinux also provides some support for stacking with the
owlsm security module, but only for options which do not require the use of the LSM security fields (i.e.
not CONFIG_OWLSM_FD).

As mentioned inSection 7, theselinux_plug_init function initializes the secondary security module
to the dummy security module, which is always resident in the kernel, prior to registering the SELinux
security module. This allows the SELinux hook functions to safely call the secondary hook functions.
Theselinux_register_security hook function sets the secondary security module to a different
module, such as the capabilities module. Theselinux_unregister_security hook function restores
the secondary security module to the dummy security module.

The dummy, capabilities, and owlsm security modules only implement a very small subset of the hook
functions. Hence, at present, the SELinux security module only calls the secondary security module for
this small set of hooks. Additionally, some of these hook functions are implemented in terms of the
capable function, so stacking thecapable hook is sufficient to cover them as well. However, there
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would be no harm other than performance in always calling the secondary security module. The SELinux
hook functions that call the secondary security module are:

• selinux_ptrace

• selinux_capget

• selinux_capset_check

• selinux_capset_set

• selinux_capable

• selinux_bprm_alloc_security

• selinux_bprm_set_security

• selinux_bprm_compute_creds

• selinux_task_post_setuid

• selinux_task_kmod_set_label

• selinux_inode_link

• selinux_inode_follow_link

More detail about these hook functions can be found inSection 23, Section 12, Section 11, andSection
14.

The dummy and capabilities security modules are easy to stack with SELinux because they do not use
the security fields LSM added to the kernel data structures. Stacking the SELinux module with any
module that does use these fields will require the definition of a common security object header with a
module identifier and a link for chaining multiple security objects on a single security field. This has not
yet been a priority.

9. New System Calls
This section discusses how the new SELinux system calls were implemented in the SELinux security
module. The code for these calls can be found in thesyscalls.c and
include/asm-i386/flask/syscalls.c files. All of the new system calls are multiplexed through
thesecurity system call added by LSM. However, SELinux could not use thesys_security

function and hook provided by LSM, because they do not provide access to the registers on the stack.
This information is needed by theexecve_secure system call.

Hence, the SELinux security module inserts its ownsys_security_selinux function into the system
call table during initialization in place of the LSM function. The SELinux function checks the module
identifier to ensure that the application is invoking a SELinux system call and then calls the individual
function for the requested call with the appropriate parameters. In the case ofexecve_secure , the
entrypoint function also passes a pointer to the registers on the stack.

As mentioned inSection 6, the implementation of the extended system calls required a different
approach than in the original SELinux prototype. Since the existing internal kernel functions could not
be extended to pass SIDs, input and output SID arrays were added to the security structure associated
with tasks (task_security_struct inselinux_plug.h ). The extended system calls can set the elements
of the in_sid array in this structure prior to calling the ordinary system call to pass SIDs to the hook
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functions called during the system call. Likewise, the hook functions can set the elements of the
out_sid array in this structure to pass SIDs back to the extended system calls for return to the
application. Since a separate Linux task structure is created even when theclone call is used to create
threads, these elements should be safe against concurrent access.

The new IPC system calls for obtaining SIDs were not as straightforward. Thesemsid , shmsid , and
msgsid calls could not directly look up the corresponding kernel object due to the encapsulation of the
IPC code, so they had to invoke an actual IPC operation to permit a hook to obtain the SID and pass it
back via theout_sid array. The corresponding control operation (e.g.SEMCTL) is called with the
IPC_STAT operation for this purpose, with a temporary kernel buffer and the data segment set to the
kernel segment to deal with the normal copyout.

Similarly, themsgrcv_secure call was complicated by the fact that thesys_msgrcv function is not
exported directly to modules and the genericipc call expects a userspace ipc_kludge structure. This was
resolved by using version1 of theMSGRCVIPC call value, thereby avoiding the need to pass such a
structure. In this case, it would not have worked to simply provide a temporary kernel structure and set
the data segment, because the other parameters include userspace pointers.

The implementation of the extended socket system calls is still in progress, and several issues still remain
to be resolved. These issues include passing a message SID and a destination socket SID for a particular
outgoing message from the socket layer hooks to the network buffer hooks, and labeling the SYNACK
packet with the correct SID when the useclient flag is set. These issues are discussed further inSection
17.4.

The final issue in implementing the new system calls was implementing theexecve_secure call. As
mentioned above, this call requires access to the registers on the stack, so SELinux had to provide its
own entrypoint function for thesecurity system call. This call parallels the processing of the existing
kernelsys_execve entrypoint function, copying in the filename and calling the kerneldo_execve

function. It only differs in that it sets an element of thein_sid array to the specified SID for use by the
program loading hook functions.

10. Helper Functions for Hook Functions
The SELinux security module provides a set of helper functions that are used extensively by the SELinux
hook implementations. This section provides an overview of these helper functions. More detailed
descriptions of individual helper functions are provided in the appropriate hooks section.

10.1. Primitive Allocation Helper Functions

For each SELinux security data structure defined inselinux_plug.h , the security module provides a
primitive alloc_security andfree_security helper function, e.g.task_alloc_security and
task_free_security . These helper functions are used both by the precondition functions described in
the next subsection and by thealloc_security andfree_security hook functions.

Each primitivealloc_security helper function allocates a security structure of the appropriate type,
sets a magic number field for subsequent sanity checking, sets a back pointer to the kernel data structure,
adds the security structure to a list of similar structures, initializes the security information, and sets the
object security field to refer to this new security structure. Currently, the security structure list and back
pointer fields are only needed to deallocate and clear all security fields when the module exits. However,
these lists and back pointers could also be useful in implementing revocation callback functions. Each
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primitive free_security helper function clears the security field, removes the security structure from
its list, and frees the security structure.

Since thealloc_security helper functions can be called from the precondition functions, they must
synchronize the initial setting of the security field. To solve this problem, a spinlock is defined for each
of these functions and used to synchronize access. Since precondition functions may also be invoked
from interrupt context, thealloc_security helper functions use theSAFE_ALLOCflag for memory
allocation andspin_lock_irqsave function for locking. TheSAFE_ALLOCflag is defined in
include/linux/flask/flask_types.h . This flag expands toGFP_ATOMICif in interrupt context or
to GFP_KERNELotherwise.

10.2. Precondition Helper Functions

The SELinux security module defines a precondition function for each security structure (e.g.
task_precondition , inode_precondition , etc). The SELinux hook functions invoke the
appropriate precondition function on each kernel object prior to dereferencing its security field. If the
security field is already set and the security structure is initialized, then the precondition function simply
returns1, indicating that the hook can proceed. Otherwise, the precondition function attempts to allocate
and/or initialize the security structure, returning1 on success. If the precondition function returns a value
less than or equal to zero, then the hook function immediately returns this value to its caller rather than
proceeding to dereference the security field. A return value less then zero indicates an error and is a
negative errno value as with other kernel functions. A return value of zero indicates that the security
structure could not be initialized but the operation should proceed, e.g. during system initialization prior
to the loading of the security policy or during the loading of the persistent label mapping for a filesystem.

The precondition functions serve several purposes. First, the precondition functions handle subjects and
objects in the system that were created prior to module initialization. Some tasks and objects (e.g. the
procfs root inode) are created prior to module initialization even when the module is compiled into the
kernel, so there are always some pre-existing subjects and objects that must be handled. An alternative
approach would be to traverse the kernel data structures (e.g. the task list and each task’s open files)
during module initialization and set the security field at that time for these pre-existing subjects and
objects. However, locating all such subjects and objects may be difficult, especially if the module is
dynamically loaded into a running kernel (e.g. an open file might be on a Unix domain socket awaiting
receipt by a process). Hence, the precondition approach seems safer. Another alternative approach would
be to view all such pre-existing subjects and objects as being outside the control of the module. However,
this isn’t an acceptable approach for a nondiscretionary access control scheme like SELinux.

It is important to note that the ability to determine the correct security attributes for these pre-existing
subjects and objects may be limited. The SELinux module does what it can to determine the correct
attributes after the fact, but it isn’t always successful in the dynamically loaded module case. This is
discussed in detail for inodes inSection 14.1.3and for tasks inSection 11.1.3. We recommend always
compiling the SELinux module into the kernel.

Second, the precondition functions handle objects whose security attributes cannot be fully determined at
allocation time. For example, when an inode security structure is allocated, thealloc_security hook
knows nothing useful about the inode, e.g. what kind of object will it represent (a file, a socket, a pipe,
etc) and what specific object will it represent (for a file, what is the inode number or pathname?). All this
hook can do is to mark the inode as unlabeled and save the label of the creating task for possible later use
if the inode turns out to be a pipe or socket. If the inode is used to represent a file, then it will later be
caught by thepost_lookup hook, which can then set its security class and security identifier. If the
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inode is used to represent a socket, then it will later be caught by thepost_create hook or theaccept

hook, which can likewise set its security class and identifier. If the inode is used to represent a pipe, it
may not be caught until it is actually used for a read or write. This issue could be avoided by providing
an explicit hook in LSM for initializing pipe security attributes.

Third, the precondition functions serve to deal with cyclical dependencies. Such cycles can be created by
dependencies between the module and the file system, e.g. loading the persistent label mapping for a file
system or loading the security policy configuration.

10.3. Permission Checking Helper Functions

A set of helper functions on kernel objects and permissions are provided that invoke the appropriate
precondition functions, dereference the security fields, and then invoke the access vector cache (AVC) to
perform the permission check with the right set of parameters. These helper functions simplify the code
for many of the hook functions that perform permission checks. They also reduce the risk that a security
field will be dereferenced without a call to the precondition function. A few examples of these functions
includetask_has_perm , inode_has_perm , andmay_create .

Although these helper functions can be convenient, hook functions are free to directly call the AVC to
perform permission checks. This is done in several cases. First, some permission checks involve a
security identifier (SID) that is not associated with a kernel object, e.g. a SID specified by an application
using one of the new system calls or a SID obtained from the security server for an object that is about to
be created. Second, some operations require multiple permission checks to be performed that are based
on some of the same SIDs. Third, some hook functions perform both a permission check and set an
output SID for return to the application. In these latter two cases, using the helper functions would cause
redundant processing in order to extract the same SIDs multiple times.

11. Task Hook Functions
The SELinux task hook function implementations manage the security fields of task_struct structures and
perform access control for task operations. This section describes these hooks and their helper functions.

11.1. Managing Task Security Fields

11.1.1. Task Security Structure

The task_security_struct structure contains security information for tasks. This structure is defined as
follows:

struct task_security_struct {
unsigned long magic;
struct task_struct *task;
struct list_head list;
security_id_t osid;
security_id_t sid;
security_id_t in_sid[2];
security_id_t out_sid[2];
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avc_entry_ref_t avcr;
};

Table 1. task_security_struct

Field Description

magic Module id for the SELinux module.

task Back pointer to the associated task_struct structure.

list Pointer used to maintain the list of allocated task security structures.

osid SID prior to the last execve.

sid SID for the task.

in_sid[2] Input SIDs used by SELinux system calls.

out_sid[2] Output SIDs returned by SELinux system calls.

avcr AVC entry reference.

11.1.2. task_alloc_security and task_free_security

The task_alloc_security andtask_free_security helper functions are the primitive allocation
functions for task security structures. Theselinux_task_alloc_security hook function calls
task_alloc_security for the new task and then copies the SID fields from the current task into the
new task. Theselinux_task_free_security hook function simply calls the corresponding helper
function.

11.1.3. task_precondition

This helper function is the precondition function for task security structures. This function ensures that
the task security structure is allocated and initialized prior to use. If the task security structure is not
already allocated, then the task was created prior to the loading of the SELinux module. In this case, this
helper function attempts to retroactively determine the SID for the task.

If the task has no parent task, then this function assigns thekernel initial SID to the task. Otherwise, the
security structure of the parent task is obtained and used to provide default values for the child task’s
security structure. The security structure for the inode that represents the task’s executable is then
obtained, and the SID of the task is computed based on the SID of the parent task and the SID of the
inode using thesecurity_transition_sid interface.

This parallels the computation that would occur normally if the parent task had forked the child and then
the child had executed the program while running SELinux. However, there are several possible reasons
why this computation might yield a different SID than the SID that would have been used if the SELinux
module had been running when the child task was created. For example, the original parent task may
have died or undergone a change in SID since creating the child. Additionally, if SELinux had been
running at an earlier point, then the child task or one of its ancestors might have used one of the new
system calls to explicitly set the SID, e.g. to set the user identity and role upon login.
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11.1.4. selinux_task_kmod_set_label

This hook function is called by the kernelexec_usermodehelper function to set the security attributes
for the kernel task running user-mode helper programs, such as modprobe. This is used for operations
such as automatic kernel module loading and hotplug support. This hook function first calls the
secondary security module to support Linux capabilities. It then sets the SID of the task to thekmod

initial SID.

11.1.5. selinux_task_post_setuid

This hook function is called after a setuid operation has successfully completed. Since the SELinux
module does not use the Linux identity attributes, this hook function does not perform any SELinux
processing. However, it does call the secondary security module to support Linux capabilities.

11.2. Controlling Task Operations

11.2.1. Helper Functions for Checking Task Permissions

Several helper functions are provided for performing task permission checks. These functions and their
permission checks are summarized inTable 2. Thetask_has_perm function checks whether a task has
a particular permission to another task. Thetask_has_capability function checks whether a task has
permission to use a particular Linux capability. Thetask_has_system function checks whether a task
has one of the permissions in thesystem security class. This security class is used for permissions that
control system operations when there is no existing capability check or the capability check is too
coarse-grained. Thetask_has_security function checks whether a task has permission to use one of
the security server system calls.

Table 2. Task Helper Function Permission Checks

Function Source Target Permission(s)

task_has_perm SourceTask TargetTask ProcessPermission

task_has_capability Task Task CapabilityPermission

task_has_system Task Kernel SystemPermission

task_has_security Task Security SecurityPermission

Except fortask_has_perm , these permission checks are simply based on a single task, so the target
SID is unnecessary. In the case oftask_has_capability , the task’s SID is passed for both the source
and target SIDs. Fortask_has_system andtask_has_security , a distinct initial SID is used for the
target SID.

11.2.2. Hook Functions for Controlling Task Operations

The task hook functions that perform access control and their permission checks are summarized in
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Table 3. These functions call thetask_has_perm helper function.

Table 3. Task Hook Function Permission Checks

Hook Source Target Permission(s)

selinux_task_create Current Current fork

selinux_task_setpgid Current TargetTask setpgid

selinux_task_getpgid Current TargetTask getpgid

selinux_task_getsid Current TargetTask getsession

selinux_task_getscheduler Current TargetTask getsched

selinux_task_setscheduler
selinux_task_setnice

Current TargetTask setsched

selinux_task_kill Current TargetTask sigchld
sigkill
sigstop
signal

selinux_task_wait ChildTask Current sigchld
sigkill
sigstop
signal

Only two of these hook functions require further explanation. Theselinux_task_kill hook function
checks a permission between the current task and the target task based on the signal being sent. The
selinux_task_wait checks a permission between the child task and the current task based on the exit
signal set for the child task. This allows control over the ability of a process to reap a child process of a
different SID. In both hooks, theSIGKILL andSIGSTOPsignals have their own distinct permissions
because neither of these two signals can be blocked. TheSIGCHLDsignal has its own distinct permission
because it is commonly sent from child processes to parent processes. For all other signals, the generic
signal permission is used.

Several of the task hook functions for controlling operations are not used by the SELinux security
module. These hook functions are:

• selinux_task_setuid

• selinux_task_setgid

• selinux_task_setgroups

• selinux_task_setrlimit

• selinux_task_prctl

Since SELinux does not depend on the Linux identity attributes, and since these operations can only
affect the current process, SELinux does not need to control these operations. Privileged aspects of these
operations are already controlled via theselinux_capable hook function. However, it may be
desirable in the future to add SELinux permissions to control these operations, e.g. to confine Linux
identity changes or to provide policy control over resource limits.

26



Implementing SELinux as a Linux Security Module

12. Program Loading Hook Functions
The SELinux binprm hook function implementations manage the security fields of linux_binprm
structures and perform access control for program loading operations. This section describes these hooks
and their helper functions.

12.1. Managing Binprm Security Fields

12.1.1. selinux_bprm_alloc_security and selinux_bprm_free_security

Theselinux_bprm_alloc_security andselinux_bprm_free_security hook functions
currently do nothing for SELinux. At present, the SELinux module directly stores the new SID for the
task in the security field of the linux_binprm structure, so a separate security structure is not allocated. In
order to support stacking with other security modules that use the security field, the SELinux module
will need to be changed to allocate a separate security structure and store the SID in this structure.

Theselinux_bprm_alloc_security hook function calls the secondary security module to support
the owlsmRLIMIT_NPROCcheck in this hook. However, since any use of the security field by the
secondary module would create a conflict for the other SELinux binprm hooks, this hook also checks
whether the secondary module set the security field. If so, then the secondary module is unregistered to
prevent conflicts between SELinux and the secondary module on subsequent binprm hook calls. Stacking
with such modules requires a common mechanism for chaining multiple security objects on the security
field, as mentioned inSection 8.

12.1.2. selinux_bprm_set_security

Theselinux_bprm_set_security hook function is called while loading a new program to fill in the
linux_binprm security field and optionally to check permissions. This hook function may be called
multiple times during a single execve, e.g. for interpreted scripts. This hook function first calls the
secondary security module to support Linux capabilities. If the security field has already been set by a
prior call, this hook merely returns. This allows security transitions to occur on scripts if permitted by the
policy.

By default, this hook function sets the security field to the SID of the current task. This function checks
the current task’s security structure to see if the task specified a new SID for the task. If so, then this SID
is used. Otherwise, the security server is consulted using thesecurity_transition_sid interface to
see whether the SID should change based on the current SID of the task and the SID of the program.

This hook function then performs different permission checks depending on whether the SID of the task
is changing. The permission checks for each case are described below. The fileexecute permission
check is performed by theselinux_inode_permission hook, so it is not listed here.

The fileexecute_no_trans permission is checked when a task would remain in the same SID upon
executing a program, as shown inTable 4. This permission check ensures that a task is allowed to
execute a given program without changing its security attributes. For example, although the login process
can execute a user shell, it should always change its SID at the same time, so it does not need this
permission to the shell program.

Table 4. Permission Checks if Task SID is not changing on exec
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Source Target Permission(s)

Current ProgramFile execute_no_trans

The processtransition permission and the fileentrypoint permission are checked when the SID of
a task changes. Thetransition permission check ensures that the old SID is allowed to transition to
the new SID. Theentrypoint permission check ensures that the new SID can only be entered by
executing particular programs. Such programs are referred to as entrypoint programs for the SID. These
permission checks are shown inTable 5.

Table 5. Permission Checks if Task SID is changing on exec

Source Target Permission(s)

Current NewTaskSID transition

NewTaskSID ProgramFile entrypoint

12.1.3. selinux_bprm_compute_creds

Theselinux_bprm_compute_creds hook function is called to set the new security attributes for the
task. This hook function first calls the secondary security module to support Linux capabilities. This
hook then copies the current SID of the task into the old SID field of the task security structure to support
thegetosecsid system call. If the new SID is the same as the old SID, then nothing further is done by
this hook.

Two additional permission checks may occur when the SID of the task is changing. If the task is being
traced, then theptrace permission is checked between the parent task and the new SID. If the task was
created viaclone and has shared state, then theshare permission is checked between the old and new
SIDs. If these permission checks fail, then the task SID is left unchanged and the task is sent a SIGKILL
to terminate it. These permission checks are shown inTable 6.

Table 6. Permission Checks if Task SID is changing on exec

Source Target Permission(s)

ParentTask NewTaskSID ptrace

Current NewTaskSID share

If all permissions are granted, this hook function changes the SID of the task to the new SID. It then calls
the flush_unauthorized_files helper function to close any file descriptors to which the task should
no longer have access. This helper function callsfile_has_perm on each open file with requested
permissions that correspond to the file mode and flags, and closes the open file if these permissions are
not granted under the new SID. Thefile_has_perm function is described inSection 15.2.1. Finally,
this hook function wakes up the parent task if it is waiting on this task. This allows the
selinux_task_wait hook to recheck whether the parent task is allowed to wait on the task under its
new SID and to handle a denial appropriately.
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13. Superblock Hook Functions
The SELinux superblock hook function implementations manage the security fields of super_block
structures and perform access control for filesystem operations. This section begins by describing the
superblock hook functions for managing the security fields. It then discusses the superblock hook
functions for performing access control.

13.1. Managing Superblock Security Fields

13.1.1. Superblock Security Structure

The superblock_security_struct structure contains security information for superblock objects. This
structure is defined as follows:

struct superblock_security_struct {
unsigned long magic;
struct super_block *sb;
struct list_head list;
security_id_t sid;
struct psidtab *psidtab;
unsigned char uses_psids;
unsigned char initialized;
unsigned long initializing;
unsigned char uses_task;
struct semaphore sem;

};

Table 7. superblock_security_struct

Field Description

magic Module id for the SELinux module.

sb Back pointer to the associated superblock.

list Pointer used to maintain the list of allocated superblock security structures.

sid SID for the file system.

uses_psids Flag indicating whether or not the file system uses persistent SIDs.

initialized Flag indicating whether the security structure has been initialized.

initializing Flag indicating whether the security structure is in the process of being initialized.

uses_task Flag indicating whether inodes in this filesystem should inherit the SID of the
creating task (e.g. pipes, sockets).

sem Semaphore used to synchronize filesystem relabels.

13.1.2. superblock_alloc_security and superblock_free_security

Thesuperblock_alloc_security andsuperblock_free_security helper functions are the
primitive allocation functions for super_block security structures. Theselinux_sb_alloc_security

andselinux_sb_free_security hook functions call these helper functions.
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13.1.3. superblock_precondition

This helper function is the precondition function for super_block security structures. This function
ensures that the super_block security structure is allocated and initialized prior to use. If the filesystem
can use the persistent label mapping, then thepsid_init function is called to initialize the mapping and
to set the SID of the super_block. This is used for regular persistent filesystem types like ext2 and
reiserfs. If the filesystem is a pseudo filesystem for private objects such as pipes or sockets, then a flag is
set to indicate that inodes associated with the filesystem should inherit the SID of the creating process. If
the filesystem is a pseudo filesystem like procfs, devpts, tmpfs, or devfs, then an appropriate initial SID
is assigned to the super_block.

13.1.4. selinux_post_mountroot

This hook function is called after the root filesystem has been mounted. If the security server has not yet
been initialized, this function calls thesecurity_init function to initialize the security server and load
the initial policy configuration. A failure at this point is fatal unless the development module option is
enabled, in which case SELinux will defer initialization and processing until a subsequent policy load or
AVC toggle. If the security server has already been initialized (i.e. the hook has been called twice due to
a change_root for an initrd), then this hook function tries to reload the policy from the new root
filesystem. If the reload fails due to either a lack of permission for the current process or a lack of a
policy on the new root filesystem, then SELinux will continue operating under the old (initrd) policy. The
hook function then calls thesuperblock_precondition function on the root filesystem to initialize
its persistent label mapping.

13.1.5. selinux_post_pivotroot

This hook function is called after a successful pivot of the root filesystem via thepivot_root system
call, typically when an initrd is used. This hook function tries to reload the policy from the new root
filesystem. If the reload fails due to either a lack of permission for the current process or a lack of a
policy on the new root filesystem, then SELinux will continue operating under the old (initrd) policy.

13.1.6. selinux_post_addmount

This hook function is called after a non-root filesystem has been mounted. It calls
superblock_precondition to initialize the persistent label mapping of the filesystem. However, this
is obsoleted by the newerselinux_check_sb hook and will be reduced to doing nothing in the future.

13.1.7. selinux_post_remount

This hook function is called after a successful remount of a filesystem (i.e. after the mount flags have
been changed). If the filesystem uses the persistent label mapping, then this hook calls the
psid_remount function to update the mapping at this time if the filesystem was previously mounted
read-only and is now mounted read-write.

30



Implementing SELinux as a Linux Security Module

13.1.8. selinux_umount_close

This hook function is called when a filesystem is being unmounted prior to checking whether the
filesystem is busy. If the filesystem uses the persistent label mapping, then this hook calls the
psid_release to free any memory and release any files used for the mapping.

13.1.9. selinux_umount_busy

This hook function is called when the kernel determines that a filesystem cannot be unmounted (e.g. the
filesystem is busy) after calling theumount_close hook. If the filesystem uses the persistent label
mapping, then this hook function callspsid_init to reinitialize the mapping.

13.2. Controlling Filesystem Operations

13.2.1. superblock_has_perm

This helper function checks whether a task has a particular permission to a filesystem. It takes the task,
the super_block, the requested permissions, and optionally audit data as parameters. This function
simply calls the AVC with the appropriate parameters.

13.2.2. selinux_sb_statfs

This hook function is called to check permission when obtaining filesystem attributes. It checks
getattr permission between the current task and the filesystem. It also saves the SID of the filesystem
in an element of theout_sid array in the task security structure for use by thestatfs_secure

system calls.

13.2.3. selinux_mount

This hook function is called to check permission when mounting a filesystem prior to the actual reading
of the superblock. If the filesystem is being remounted (i.e. the mount flags are being changed), then this
function checksremount permission between the current task and the filesystem. Otherwise, this
function checksmounton permission between the current task and the mountpoint directory.

13.2.4. selinux_check_sb

This hook function is called to check permission when mounting a filesystem after reading the
superblock. This function checksmount permission between the current task and the filesystem. Prior to
checking permission,superblock_precondition is called, so the persistent label mapping for the
filesystem will be initialized by this hook.

13.2.5. selinux_umount

This hook function is called to check permission when unmounting a filesystem. This function checks
unmount permission between the current task and the filesystem.
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13.2.6. selinux_pivotroot

This (recently added) hook function is called to check permission when pivoting the root filesystem.
Since thepivot_root system call also invokes thecapable function with theCAP_SYS_ADMIN

capability, the SELinux module already requires that the current process have permission to use this
capability. This hook enables security modules to impose finer-grained restrictions on the use of the
operation, e.g. distinguishing the operation from other operations that use the same capability and basing
decisions on the security attributes of the new root filesystem. The SELinux module does not yet take
advantage of this ability, but a finer-grained permission check is planned for the future.

13.2.7. Summary of Filesystem Permission Checks

The permission checks for the super_block hooks are summarized inTable 8.

Table 8. Filesystem Permission Checks

Hook Source Target Permission(s)

selinux_sb_statfs Current Filesystem getattr

selinux_mount Current
Current

MountDirectory
Filesystem

mounton
remount

selinux_check_sb Current Filesystem mount

selinux_umount Current Filesystem unmount

14. Inode Hook Functions
The SELinux inode hook function implementations manage the security fields of inode structures and
perform access control for inode operations. Since inodes are used to represent pipes, files, and sockets,
the hook functions must handle each of these abstractions. Furthermore, these hooks must handle
multiple filesystem types, including both ordinary filesystems like ext2 and reiserfs and pseudo
filesystems like devfs, procfs, and tmpfs. This section begins by describing the inode hook functions for
managing the security fields. It then discusses the inode hook functions for performing access control.

14.1. Managing Inode Security Fields

14.1.1. Inode Security Structure

The inode_security_struct structure contains security information for inodes. This structure is defined as
follows:

struct inode_security_struct {
unsigned long magic; /* magic number for this module */
struct inode *inode; /* back pointer to inode object */
struct list_head list; /* list of inode_security_struct */
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security_id_t task_sid; /* SID of creating task */
security_id_t sid; /* SID of this object */
security_class_t sclass; /* security class of this object */
avc_entry_ref_t avcr; /* reference to object permissions */
unsigned char initialized; /* initialization flag */
unsigned long initializing; /* initializing flag */
ctl_sid *ctl;
struct semaphore sem;

};

Table 9. inode_security_struct

Field Description

magic Module id for the SELinux module.

inode Back pointer to the associated inode.

list Pointer used to maintain the list of allocated inode security structures.

task_sid SID of the creating task.

sid SID of the inode.

sclass Security class of this inode.

avcr AVC entry reference.

initialized Flag indicating whether the security structure has been initialized.

initializing Flag indicating whether the security structure is in the process of being initialized.

ctl Pointer into the shadow sysctl table for /proc/sys entries (SeeSection 14.1.3.1).

sem Semaphore for synchronizing file relabels.

When the extended socket call option is enabled, the inode_security_struct structure is extended to
include additional fields related to the extended socket calls. This is discussed further inSection 17.4.

14.1.2. inode_alloc_security and inode_free_security

The inode_alloc_security andinode_free_security helper functions are the primitive
allocation functions for inode security structures. In addition to the general processing for these primitive
allocation functions,inode_alloc_security tries to save the SID of the current task in the
task_sid field. If the security structure of the current task is not already set, this function merely sets
this field to the unlabeled SID. Theselinux_inode_free_security hook function merely calls the
inode_free_security helper function.

The inode_alloc_security function can not safely calltask_precondition , because
inode_alloc_security may be called indirectly fromtask_precondition . Hence, callers of
inode_alloc_security should first calltask_precondition on the current task when possible.
This is done by theselinux_inode_alloc_security hook function.

14.1.3. inode_precondition

This helper function is the precondition function for inode security structures. This function ensures that
the inode security structure is allocated and initialized prior to use. Prior to initializing the inode security
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structure, this function callssuperblock_precondition to ensure that the security structure for the
superblock that is associated with the inode has been allocated and initialized.

Since inodes can represent many different kinds of objects, the inode security class must be determined
and set in the security structure. If the inode represents a socket, then the
socket_type_to_security_class function is used to obtain the security class based on the socket
family and type. The socket security classes are described inSection 17.2.1. Otherwise, the
inode_mode_to_security_class function is used to obtain the security class based on the inode
mode. The mapping between inode modes and security classes is described inTable 10. If the inode does
not have any of the modes listed inTable 10, then it defaults to the file security class.

Table 10. Inode Security Classes

Mode Security Class

S_IFREG file

S_IFDIR dir

S_IFLNK lnk_file

S_IFFIFO fifo_file

S_IFSOCK sock_file

S_IFBLK blk_file

S_IFCHR chr_file

The inode security identifier (SID) is then determined based on information in the superblock security
structure. If the filesystem can use the persistent label mapping, then thepsid_to_sid function is called
to obtain the SID of the inode. This is used for regular persistent filesystem types like ext2 and reiserfs.

If the inode represents a private object such as a socket or pipe, then the inode inherits the SID of the task
that allocated its security structure. For inodes allocated after the initialization of the SELinux module,
this is the same task that allocated the inode, so the private object inherits the SID of its creator.
However, if the inode was allocated before the initialization of the SELinux module and subsequently
caught byinode_precondition , then this may be a different task which simply happens to be the first
to access the object since the module was loaded. Hence, for sockets and pipes, the principle of first use
is applied to retroactively determine the SID of a pre-existing object. If SELinux is to be used as a
separate module, then a better approach is needed for labeling pre-existing sockets and pipes.

The handling for pseudo filesystem types is specialized to provide reasonable security semantics for each
type. At present, the SELinux security module defines labeling behaviors for the procfs, devpts, tmpfs,
and devfs pseudo filesystem types. The handling for each of these filesystem types is described below.

14.1.3.1. Procfs File Labeling

For procfs inodes, theprocfs_set_sid function is called to set the inode SID. The root directory inode
is assigned theproc initial SID. Highly sensitive files such askmsg andkcore are also assigned
individual initial SIDs. Thesys subdirectory and the per-process PID subdirectories are handled
specially, as described below. Most inodes simply inherit the SID of their parent directory.

Thesys subdirectory is assigned thesysctl initial SID. The SIDs of entries in thesys subdirectory are
determined by traversing the ctl_sid_root_table hierarchical table. This table shadows the kernel sysctl
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table and allows SIDs to be selectively assigned at any level, with unspecified entries simply inheriting
the SID of the parent entry. Since a pointer into the table is saved in the parent inode’s security structure,
this function simply searches the parent inode’s table and does not need to reconstruct an absolute
pathname. This table is also used by thesysctl hook as described inSection 23.

The per-process PID subdirectories are assigned the SID of the associated process. For each top-level
PID subdirectory, the task is looked up by PID and its SID is used for the inode. Entries within the PID
subdirectories simply inherit the SID of their parent directory.

14.1.3.2. Devpts and Tmpfs File Labeling

For devpts and tmpfs inodes, a SID is assigned when the inode is first accessed based on the SID of the
process and an initial SID defined for the filesystem type. This SID is computed using the
security_transition_sid interface of the security server. This permits the security policy
configuration to define derived types for each domain’s pseudo terminal devices and for each domain’s
shared memory pseudo files via the type_transition rules.

14.1.3.3. Devfs File Labeling

For devfs inodes, a SID is assigned when the inode is first accessed based on the pathname (relative to
the root of the filesystem) and the security class of the inode. This SID is computed using the
security_devfs_sid interface of the security server. This permits the security policy configuration to
define security contexts for devfs nodes based on their pathname. SELinux support for using devfs is still
experimental.

14.1.4. selinux_inode_post_lookup

This hook function is called after a successful lookup. At this point, useful information such as the inode
number and mode are available for use in determining the security attributes of the inode. This function
simply calls theinode_precondition function to set the SID and security class on the inode if it has
not already been set.

14.1.5. post_create

Thepost_create helper function is called by several inode post-operation hooks which are called after
a successful file creation. This helper function sets information in the inode security structure for an
inode that represents a newly created file. This function first tests whether the dentry for the newly
created file has a null inode. This can happen if the filesystem did not instantiate the dentry for the new
file, e.g. NFS does not instantiate a dentry for symbolic links. If the dentry has a null inode, then this
function merely returns.

This function checks the current task’s security structure to see if the task specified a SID for the new
file. If so, then this SID is used. Otherwise, a SID is obtained from the security server by calling the
security_transition_sid interface; passing in the task and directory SIDs. The
inode_security_set_sid helper function is called to set the SID and security class in the inode
security structure. This function then checks the superblock security structure to see whether the
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filesystem uses a persistent label mapping. If so, then this functions call thesid_to_psid function to
set the persistent SID for the inode in the persistent label mapping.

This function is called by the following inode hook functions:

• selinux_inode_post_create

• selinux_inode_post_symlink

• selinux_inode_post_mkdir

• selinux_inode_post_mknod

14.1.6. selinux_inode_post_link/rename

Theselinux_inode_post_link hook function is called after a new hard link has been successfully
created. Theselinux_inode_post_rename hook function is called after a successful rename. Both of
these hook functions immediately return. SELinux does not need to update any state when a new hard
link is created or a rename occurs, because security attributes are associated with inodes, not pathnames.

14.1.7. selinux_inode_delete

This hook function is called when a deleted inode is released, i.e. an inode with no hard links has its use
count drop to zero. The function calls theclear_psid to clear the persistent SID for the inode in the
persistent label mapping.

14.1.8. selinux_inode_revalidate

This hook function is called to revalidate the inode attributes. When support for NFS file labeling is
added to SELinux, this hook function will be used to revalidate the SID of the inode. At present, this
hook function merely returns success.

14.2. Controlling Inode Operations

14.2.1. inode_has_perm

This helper function checks whether a task has a particular permission to an inode. In addition to taking
the task, inode, and requested permission as parameters, this function takes two optional parameters. The
first optional parameter, aeref, allows another AVC entry reference, such as the one in the file security
structure, to be passed for use instead of the reference in the inode security structure. The second optional
parameter, adp, allows other audit data, such as the particular dentry, to be passed for use if an audit
message is generated. This function simply calls the AVC to check the requested permission to the inode.
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14.2.2. dentry_has_perm

This helper function is the same as theinode_has_perm except that it takes a dentry as a parameter
rather than an inode. This function saves the dentry in the audit data structure and calls
inode_has_perm with the appropriate parameters.

14.2.3. may_create

This helper function checks whether the current task can create a file. It takes the parent directory inode,
the dentry for the new file, and the security class for the new file. This function checks the current task’s
security structure to see if the task specified a SID for the new file. If so, then this SID is used.
Otherwise, a SID is obtained from the security server using thesecurity_transition_sid interface.
The function then checks permissions as described inTable 11.

Table 11. Create Permission Checks

Source Target Permission(s)

Current ParentDirectory search, add_name

Current File create

File Filesystem associate

This helper function is called by the following inode hook functions:

• selinux_inode_create

• selinux_inode_symlink

• selinux_inode_mkdir

• selinux_inode_mknod

14.2.4. may_link

This helper function checks whether the current task can link, unlink, or rmdir a file or directory. It takes
the parent directory inode, the dentry of the file, and a flag indicating the requested operation. The
permission checks for these operations are shown inTable 12andTable 13.

Table 12. Link Permission Checks

Source Target Permission(s)

Current ParentDirectory search, add_name

Current File link

Table 13. Unlink or Rmdir Permission Checks
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Source Target Permission(s)

Current ParentDirectory search, remove_name

Current File unlink or rmdir

This helper function is called by the following inode hook functions:

• selinux_inode_link

• selinux_inode_unlink

• selinux_inode_rmdir

14.2.5. may_rename

This function checks whether the current task can rename a file or directory. It takes the inodes of the old
and new parent directories, the dentry of an existing link to the file, and the new dentry for the file. This
function checks the permissions described inTable 14, Table 15, andTable 16. The permissions inTable
14are always checked. The permissions inTable 15are only checked if the new dentry already has an
existing inode (i.e. a file already exists with the new name), in which case that file will be removed by the
rename. The permissions inTable 16are only checked if the file is a directory and its parent directory is
being changed by the rename.

Table 14. Basic Rename Permission Checks

Source Target Permission(s)

Current OldParentDirectory search, remove_name

Current File rename

Current NewParentDirectory search, add_name

Table 15. Additional Rename Permission Checks if NewFile Exists

Source Target Permission(s)

Current NewParentDirectory remove_name

Current NewFile unlink or rmdir

Table 16. Additional Rename Permission Checks if Reparenting

Source Target Permission(s)

Current File reparent

This helper function is called by the following inode hook functions:
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• selinux_inode_rename

14.2.6. selinux_inode_permission

This hook function is called by the Linuxpermission function to check permission when accessing an
inode. It converts the permission mask to an access vector using thefile_mask_to_av function, and
calls inode_has_perm with the appropriate parameters.Table 17specifies the SELinux permission that
is checked for each permission mask flag when checking access to a directory.Table 18provides the
corresponding permission information when checking access to a non-directory file.

In Table 17, notice that a write permission mask causes the generalwrite permission to be checked. This
hook function cannot distinguish among the various kinds of modification operations on directories, so it
cannot use the finer-grained permissions (add_name, remove_name , or reparent ). Hence, directory
modifications require both the generalwrite permission and the appropriate finer-grained permission to
be granted between the task and the inode. The generalwrite permission check could be omitted from
this hook, but it is performed to ensure that all directory modifications are mediated by the policy.

Table 17. Directory Permission Checks

Mask Permission

MAY_EXEC search

MAY_READ read

MAY_WRITE write

In Table 18, notice that a separateMAY_APPENDpermission mask andappend permission are listed. This
permission mask was added by the LSM kernel patch and is used (along with MAY_WRITE) when a file
is opened with theO_APPENDflag. This allows the security module to distinguish append access from
general write access. Theselinux_file_fcntl hook ensures that theO_APPENDflag is not
subsequently cleared unless the process haswrite permission to the file.

Table 18. Non-Directory Permission Checks

Mask Permission

MAY_EXEC execute

MAY_READ read

MAY_APPEND append

MAY_WRITE write

14.2.7. Other inode access control hook functions

The remaining inode hook functions are called to check permissions for various operations. Since each
of these remaining hook functions only require a single permission between the current task and the file,
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the permission checks are all described inTable 19.

Table 19. Remaining Inode Hook Permission Checks

Hook Permission

selinux_inode_readlink read

selinux_inode_follow_link read

selinux_inode_setattr setattr

selinux_inode_stat getattr

Of these hooks, only two require further description. First, theselinux_inode_setattr hook merely
checks the generalsetattr permission to the file. Separate permissions could be defined for different
kinds of setattr operations, e.g. chown, chmod, utimes, truncate. However, this level of distinction does
not seem to be necessary to support nondiscretionary access control policies. Second, in addition to
performing a permission check, theselinux_inode_stat saves the SID of the inode in an element of
theout_sid array in the task security structure for use by thestat_secure system calls.

15. File Hook Functions
The SELinux file hook functions manage the security fields of file structures and perform access control
for file operations. Each file structure contains state such as the file offset and file flags for an open file.
Since file descriptors may be inherited acrossexecve calls and may be transferred through IPC, they can
potentially be shared among processes with different security attributes, so it is desirable to separately
label these structures and control the use of them. Additionally, it is necessary to save task security
information in these structures forSIGIO signals.

15.1. Managing File Security Fields

15.1.1. File Security Structure

The file_security_struct structure contains security information for file objects. This structure is defined
as follows:

struct file_security_struct {
unsigned long magic;
struct file *file;
struct list_head list;
security_id_t sid;
security_id_t fown_sid;
avc_entry_ref_t avcr;
avc_entry_ref_t inode_avcr;

};

Table 20. file_security_struct
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Field Description

magic Module id for the SELinux module.

file Back pointer to the associated file.

list Pointer used to maintain the list of allocated file security structures.

sid SID of the open file descriptor.

fown_sid SID of the file owner; used forSIGIO events.

avcr AVC entry reference for the file.

inode_avcr AVC entry reference for the associated inode.

15.1.2. file_alloc_security and file_free_security

The file_alloc_security andfile_free_security helper functions are the primitive allocation
functions for file security structures. In addition to the general security field management,
file_alloc_security tries to associate the file with the SID of the current task. If the security
structure of the current task is not already set, the file is associated with the unlabeled SID. Callers of this
function should first calltask_precondition on the current task if possible. The
file_free_security simply releases all resources.

Theselinux_file_alloc_security calls thetask_precondition function to ensure that the SID
of the current task is set and then calls the helper function. Theselinux_file_free_security hook
functions merely calls the helper function.

15.1.3. file_precondition

The file_precondition helper function ensures that the file security structure is allocated and
initialized prior to use. This function callstask_precondition on the current task and then calls
file_alloc_security .

15.1.4. selinux_file_set_fowner

This hook function is called to save security information about the current task in the file security
structure for later use by theselinux_file_send_sigiotask hook. One example of where this hook
is called is thefcntl call for theF_SETOWNcommand. This hook saves the SID of the current task in
thefown_sid field of the file security structure.

15.2. Controlling File Operations

15.2.1. file_has_perm

This helper function checks whether a task can use an open file descriptor to access a file in a given way.
It takes the task, the file, and the requested file permissions as parameters. This function first calls the
AVC to checkuse permission between the task and the file descriptor. If this permission is granted, then
this function also checks the requested permissions to the file using thedentry_has_perm helper
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function. In some cases (e.g. lseek), this helper function is called with no requested file permissions in
order to simply check the ability to use the descriptor. In these cases, the latter check is omitted.

15.2.2. selinux_file_permission

This hook function is called by operations such asread , write , andsendfile to revalidate
permissions on use to support privilege bracketing or policy changes. It takes the file and permission
mask as parameters. If theO_APPENDflag is set in the file flags, then this hook function first sets the
MAY_APPENDflag in permission mask. This function then converts the permission mask to an access
vector using thefile_mask_to_av function, and callsfile_has_perm with the appropriate
parameters.

15.2.3. selinux_file_llseek

This hook function is called by thelseek andllseek system calls to control access to the file offset. It
calls file_has_perm with no requested file permissions to simply check access to the file descriptor.

15.2.4. selinux_file_ioctl

This hook function is called by theioctl system call. It callsfile_has_perm with a requested file
permission based on the command argument. For some commands, no file permission is specified so
only theuse permission is checked. The genericioctl file permission is used for commands that are
not specifically handled.Table 21shows the permission checks performed for each command.

Table 21. I/O Control Permission Checks

Command Source Target Permission(s)

FIONREAD
FIBMAP
FIGETBSZ
EXT2_IOC_GETFLAGS
EXT2_IOC_GETVERSION

Current FileDescriptor
File

use
getattr

EXT2_IOC_SETFLAGS
EXT2_IOC_SETVERSION

Current FileDescriptor
File

use
setattr

FIONBIO
FIOASYNC

Current FileDescriptor use

Other Current FileDescriptor
File

use
ioctl

15.2.5. selinux_file_mmap

This hook function is called bymmapto check permission when mapping a file. At present, if anonymous
memory is being mapped, i.e. the file parameter isNULL, no checks are performed. However, this may be
changed later to ensure that execute access to anonymous memory can be controlled. If a file is being
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mapped, thenfile_has_perm is called with a set of permissions based on the flags and protection
parameters.

Since read access is always possible with file mapping, theread permission is always required. The
write permission is only checked if the mapping is shared andPROT_WRITEwas requested. The
execute permission is only checked ifPROT_EXECwas requested. However, on some architectures,
read access to memory is sufficient to execute code from it, so the ability to strictly control code
execution is limited on such architectures.

It should be noted that the protection on a mapping may subsequently become invalid due to a file relabel
or a change in the security policy. Hence, support for efficiently locating and invalidating the appropriate
mappings upon such changes is needed to support full revocation. This support has not yet been
implemented for the SELinux security module.

15.2.6. selinux_file_mprotect

This hook function is called by themprotect call to check the requested new protection for an existing
mapping. This hook simply callsselinux_file_mmap with the file, new protection value, and the
existing flags for the mapping.

15.2.7. selinux_file_lock

This hook function is called by theflock system call. It callsfile_has_perm with the lock

permission.

15.2.8. selinux_file_fcntl

This hook function is called by thefcntl system call. It callsfile_has_perm with a requested file
permission based on the command parameter. The basic permission checks performed for each command
are shown inTable 22.

Table 22. File Control Permission Checks

Command Source Target Permission(s)

F_SETFL
F_SETOWN
F_SETSIG
F_GETFL
F_GETOWN
F_GETSIG

Current FileDescriptor use

F_GETLK
F_SETLK
F_SETLKW
F_GETLK64
F_SETLK64
F_SETLKW64

Current FileDescriptor
File

use
lock
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In addition to these basic checks, thewrite permission is checked if theF_SETFL command is used to
clear theO_APPENDflag. This ensures that a process that only hasappend permission to the file cannot
subsequently obtain full write access after opening the file.

15.2.9. selinux_file_send_sigiotask

This hook function is called to check whether a signal generated by an event on a file descriptor can be
sent to a task. This function is always called from interrupt. It is passed the target task, a file owner
structure and several other parameters that are unused by SELinux. Since the file owner structure is
embedded in a file structure, the file structure and its security field can be extracted by the hook function.
The hook function calls the AVC to check the appropriate signal permission between thefown_sid in
the file security structure and the target task SID.

15.2.10. selinux_file_receive

This hook function is called to check whether the current task can receive an open file descriptor that was
sent via socket IPC. This function calls thefile_to_av function to convert the file flags and mode to an
access vector and then callsfile_has_perm to check that the receiving task has these permissions to
the file. If this hook returns an error, then the kernel will cease processing the message and will pass a
truncated message to the receiving task.

16. System V IPC Hook Functions
The SELinux System V Inter-Process Communication (IPC) hook functions manage the security fields
and perform access control for System V semaphores, shared memory segments, and message queues.
This section describes these hooks and their helper functions.

16.1. Managing System V IPC Security Fields

16.1.1. IPC Security Structure

The ipc_security_struct structure contains security information for IPC objects. This structure is defined
as follows:

struct ipc_security_struct {
unsigned long magic;
struct kern_ipc_perm *ipc_perm;
security_class_t sclass;
struct list_head list;
security_id_t sid;
avc_entry_ref_t avcr;

};

Table 23. ipc_security_struct
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Field Description

magic Module id for the SELinux module.

ipc_perm Back pointer to the associated kern_ipc_perm.

sclass Security class for the IPC object (seeSection 16.1.2).

list Pointer used to maintain the list of allocated IPC security structures.

sid SID for the IPC object.

avcr AVC entry reference.

Likewise, the msg_security_struct structure contains security information for IPC message objects. This
structure is defined as follows:

struct msg_security_struct {
unsigned long magic;
struct msg_msg *msg;
struct list_head list;
security_id_t sid;
avc_entry_ref_t avcr;

};

Table 24. msg_security_struct

Field Description

magic Module id for the SELinux module.

msg Back pointer to the associated IPC message;

list Pointer used to maintain the list of allocated IPC message security structures.

sid SID for the IPC message.

avcr AVC entry reference.

16.1.2. ipc_alloc_security and ipc_free_security

The ipc_alloc_security andipc_free_security helper functions are the primitive allocation
functions for the security structures for semaphores, shared memory segments, and message queues. The
kernel data structures for these objects share a common substructure, kern_ipc_perm, and the security
field is located in this shared substructure; a single set of helper functions can be used for all three object
types. If a SID was specified using one of the new IPC system calls, then the specified SID is used for the
IPC object. Otherwise, the IPC object inherits its SID from the creating task. The security class for the
IPC object is passed by the caller; it will be one ofSECCLASS_MSGQ, SECCLASS_SEM, or
SECCLASS_SHM.

The ipc_alloc_security function is called by the following allocation hook functions:

• selinux_sem_alloc_security

• selinux_shm_alloc_security

• selinux_msg_queue_alloc_security
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Each of these hook functions callstask_precondition on the current task prior to calling
ipc_alloc_security to ensure that task security structure will be available. This is not handled within
the primitive allocation function itself, as with the other primitive allocation functions, to ensure that no
cycles arise, although this would not currently be a problem for IPC objects. These hook functions then
check thecreate permission between the current task and the IPC object. Hence, these hook functions
have the unusual property of being used both for allocation and a permission check. Using two separate
hooks for this purpose would be cleaner but inefficient, since they would both be called at the same point.

The ipc_free_security function is called by the following deallocation hook functions:

• selinux_sem_free_security

• selinux_shm_free_security

• selinux_msg_queue_free_security

These deallocation hook functions do not perform any other processing.

16.1.3. msg_msg_alloc_security and msg_msg_free_security

Themsg_msg_alloc_security andmsg_msg_free_security helper functions are the primitive
allocation functions for the security structures for individual messages on a message queue. These helper
functions provide all of the processing for theselinux_msg_msg_alloc_security and
selinux_msg_msg_free_security hook functions. These helper functions simply provide the
standard processing for primitive allocation functions, and initialize the message SID to the unlabeled
SID.

16.1.4. ipc_precondition

This helper function is the precondition function for IPC security structures. This function ensures that
the IPC security structure is allocated and initialized prior to use. If the security structure is not already
allocated, then this function first callstask_precondition on the current task and then calls
ipc_alloc_security . Since it cannot determine the appropriate security class automatically, the
security class is passed by the caller.

16.1.5. msg_precondition

This helper function is the precondition function for individual message security structures. This
function ensures that the message security structure is allocated and initialized prior to use. If the
security structure is not already allocated, then this function simply callsmsg_msg_alloc_security .

16.1.6. ipc_savesid

This helper function saves the SID of an IPC object in theout_sid array of the current task’s security
structure for use by the new system calls. This helper function first calls the appropriate precondition
functions to ensure that the necessary security structures are available. This function is called by the IPC
control hooks when the command isIPC_STAT.
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16.2. Controlling General IPC Operations

This section describes the helper and hook functions for controlling general IPC operations. Although
the allocation functions do perform acreate permission check, they are not listed here since they were
discussed in the previous section.

16.2.1. ipc_has_perm

This helper function calls the appropriate precondition functions and then calls the AVC to check
whether the current task has a particular permission to an IPC object. The security class of the IPC object
is passed by the caller in case the IPC object’s security structure has not yet been allocated.

16.2.2. selinux_ipc_permission

This hook function is called from the kernelipcperms function, so it is called prior to all IPC operations
that will read or modify the IPC object. This hook function checksunix_read and/orunix_write

permission to the IPC object based on the flag, as shown inTable 25. These permissions provide a
coarse-grained equivalent to the Unix permissions, whereas the other IPC hooks check finer-grained
permissions. These coarse-grained permission checks are not strictly necessary, but ensure that all IPC
accesses are mediated by the policy.

Table 25. ipc_permission Permission Checks

Flag Permission

S_IRUGO unix_read

S_IWUGO unix_write

16.2.3. selinux_ipc_getinfo

When a task attempts to use a*_INFO command in a *ctl call on an IPC object, the kernel calls this hook
function. This hook function checks theipc_info system permission for the current task.

16.2.4. selinux_*_associate

When a task attempts to obtain an IPC object identifier for an existing object via one of the *get calls, the
kernel calls the corresponding associate hook function for the object type. The SELinux IPC associate
hook functions are:

• selinux_sem_associate

• selinux_shm_associate

• selinux_msg_queue_associate

These hook functions checkassociate permission between the current task and the IPC object. If one
of the new*get_secure system calls was used to specify a desired SID for the IPC object, then these
hook functions also verify that the SID matches the desired SID.
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16.3. Controlling Semaphore Operations

16.3.1. selinux_semctl

This hook function checks permissions before performing an operation on the specified semaphore; the
specific permission is determined by the operation being performed. The permissions required for each
operation are shown inTable 26.

Table 26. Semaphore Control Permissions

Operation Source Target Permission

GETPID
GETNCNT
GETZCNT

Current Sem getattr

GETVAL
GETALL

Current Sem read

SETVAL
SETALL

Current Sem write

IPC_RMID Current Sem destroy

IPC_SET Current Sem setattr

IPC_STAT
SEM_STAT

Current Sem getattr, associate

16.3.2. selinux_semop

This hook function checks permissions for semaphore operations. It always checksread permission
between the current task and the semaphore. If the semaphore value is being altered, it also checks
write permission between the current task and the semaphore. Notice that these permissions are
different from theunix_read andunix_write permissions checked byselinux_ipc_permission .

16.4. Controlling Shared Memory Operations

16.4.1. selinux_shm_shmctl

This hook function checks permissions before performing an operation on the specified shared memory
region; the specific permission is determined by the operation being performed. The permissions
required for each operation are shown inTable 27.

Table 27. Shared Memory Control Permissions

Operation Source Target Permission
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Operation Source Target Permission

IPC_STAT
SHM_STAT

Current Shm getattr, associate

IPC_SET Current Shm setattr

SHM_LOCK
SHM_UNLOCK

Current Shm lock

IPC_RMID Current Shm destroy

16.4.2. selinux_shm_shmat

This hook function checks permissions for shared memory attach operations. It always checkread

permission between the current task and the shared memory object. If theSHM_RDONLYflag was not
specified, then it also checkswrite permission between the current task and the shared memory object.
Notice that these permissions are different from theunix_read andunix_write permissions checked
by selinux_ipc_permission .

16.5. Controlling Message Queue Operations

16.5.1. selinux_msg_queue_msgctl

This hook function checks permissions before performing an operation on the specified message queue;
the specific permission is determined by the operation being performed. The permissions required for
each operation are shown inTable 28.

Table 28. Message Queue Control Permissions

Operation Source Target Permission

IPC_STAT
MSG_STAT

Current MessageQueue getattr, associate

IPC_SET Current MessageQueue setattr

IPC_RMID Current MessageQueue destroy

16.5.2. selinux_msg_queue_msgsnd

This hook function is called by themsgsnd system call to check the ability to place an individual
message on a message queue. It performs three permission checks, involving the current task, the
message queue, and the individual message. These checks are shown inTable 29. This hook function
also sets the SID on the message if it is unlabeled. It uses the SID from thein_sid array of the task
security structure if the newmsgsnd_secure system call was used. Otherwise, it calls the
security_transition_sid interface of the security server to obtain a SID based on the SID of the
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task and the SID of the message queue.

Table 29. Message Send Permissions

Source Target Permission

Current MessageQueue write

Current Message send

Message MessageQueue enqueue

16.5.3. selinux_msg_queue_msgrcv

This hook function can be called by either themsgsnd system call (for a pipelined send) or by the
msgrcv system call to check the ability to receive an individual message from a message queue. Hence,
the receiving task may not be the current task and is explicitly passed to the hook. This hook function
performs two permission checks, involving the receiving task, the message queue, and the individual
message. These permission checks are shown inTable 30. In the case that the newmsgrcv_secure

system call is being used to specify a desired message SID, then this hook also checks the actual
message SID against the desired message SID. This hook function also saves the SID of the message for
use by the new system call. It is important to note that an error return from this hook simply causes the
individual message to be ignored in the same manner as if it had the wrong message type. Hence, access
denials on individual messages are not propagated to the calling process and may cause the calling
process to block waiting for messages that are accessible.

Table 30. Message Receive Permissions

Source Target Permission

ReceiverTask MessageQueue read

ReceiverTask Message receive

17. Socket Hook Functions
The SELinux socket hook function implementations manage the security fields of socket structures and
perform access control for socket operations. This section describes these hooks and their helper
functions. The section concludes by describing the optional hook function processing for the extended
socket calls.

17.1. Socket Related Security Structures

Security information can be attached to two additional kernel objects, the kernel socket (struct sock) and
the open request information block (struct open_request). The security fields attached to these objects are
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used to reliably store the remote (peer) SID for a connection, and to label server sockets with the client
SID when extended socket calls are used.

The sock_security_struct is used to store security information about the peer during connection
establishment when the user socket is not yet allocated for the new connection.

struct sock_security_struct {
unsigned long magic; /* magic number for this module */
struct sock *sk; /* back pointer to sock object */
struct list_head list; /* list of sock_security_struct */
security_id_t sid; /* SID of the sock */
security_id_t peer_sid; /* SID of the network peer */

}

Table 31. sock_security_struct

Field Description

magic Module id for the SELinux module.

sk Back pointer to the associated sock structure.

list Pointer used to maintain the list of allocated sock security structures.

sid SID of the socket; equal to user space socket SID.

peer_sid SID of the peer socket.

Thesocket_sock_alloc_security andsocket_sock_free_security hooks are used to allocate
and free the security structure associated with the kernel socket. Security information is stored in the
kernel socket in order to propagate the SID for a client to the user socket that is ultimately created on the
server. However, because the new server socket is not created until the connection has been established,
the SID for the client is stored in the kernel socket which is always present.

The kernel object, struct open_request, has an LSM security field as well. SELinux uses this field to store
security information about the TCP client during connection establishment. SeeSection 17.4for
information on the definition of the open request security structure and it’s use.

17.2. Managing Socket Related Security Fields

The SELinux module uses the security structure for the inode associated with the user space socket, so
the inode_alloc_security , inode_free_security andinode_precondition functions are also
applicable to sockets. SeeSection 14.1for a discussion of these functions. However, additional
socket-specific hook functions are necessary to initialize and manage the information in these inode
security structures for sockets. These hook functions are described below.

17.2.1. selinux_socket_post_create

After a socket structure has been successfully created, this hook function is called to update the inode
security field with information that was not previously available. By default, the inode SID is set to the
SID of the creating task. The socket object class is refined into separate object classes for the different
types of sockets, as determined by the type and protocol family specified as parameters to thesocket
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system call. The security class is assigned according toTable 32. If the socket does not match any of the
specified types, it defaults to the generic socket security class. The kernel socket (struct sock) associated
with the socket will have it’s SID set to the user socket SID. This SID is used to label outgoing packets
from a socket that has no user space socket structure associated with it.

Table 32. Socket Security Classes

Protocol Family Type Security Class

PF_UNIX SOCK_STREAM unix_stream_socket

PF_UNIX SOCK_DGRAM unix_dgram_socket

PF_INET/PF_INET6 SOCK_STREAM tcp_socket

PF_INET/PF_INET6 SOCK_DGRAM udp_socket

PF_INET/PF_INET6 SOCK_RAW rawip_socket

PF_NETLINK * netlink_socket

PF_PACKET * packet_socket

PF_KEY * key_socket

17.2.2. selinux_socket_accept

This hook function is called after a new socket has been created for the connection but prior to calling the
protocol family’s accept function. In addition to checking permission (discussed further inSection 17.3),
this hook function sets the SID and security class for the new socket. The new socket always inherits the
security class of the listening socket. By default, the new socket SID is initialized to the SID of the
listening socket. The new socket initialization must occur in this hook, since traffic can occur on the
socket before thepost_accept hook is called.

17.2.3. selinux_socket_post_accept

This hook function is called after calling the protocol family’saccept function. This hook calls the
extsocket_post_accept function (seeSection 17.4).

17.2.4. selinux_tcp_connection_request

A new connection is being requested on a listening socket. This hook allows the LSM module to
maintain security information about the client during the connection establishment. The only function
performed by this hook is to call theextsocket_tcp_connection_request hook.

17.2.5. selinux_tcp_synack

A reply SYN/ACK is being sent for a connection request. This hook allows the LSM module to label the
SYN/ACK packet. For SELinux, the label used will be the client SID or the listening socket SID,
depending on the use of extended socket functionality. This hook is called after theskb_set_owner_w
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hook, and therefore, will override any labeling done by that hook. The only function performed by this
hook is to call theextsocket_tcp_synack hook.

17.2.6. selinux_tcp_create_openreq_child

This hook is called when a new TCP kernel socket is created, typically during theaccept system call.
The security data associated with the listening socket is preserved in the new kernel socket, and later
used to label packets that are sent from the socket after the user space socket has been detached. After
labeling the new socket, this hook calls theextsocket_tcp_create_openreq_child hook.

17.3. Controlling Socket Operations

17.3.1. socket_has_perm

This helper function checks whether a task has a particular permission to a socket. It first calls the
precondition functions for the task and the socket’s inode. It then calls the AVC to check the permission.

17.3.2. Socket Layer Hooks

The socket layer access control hook functions first check a permission between the current task and the
socket using thesocket_has_perm helper function (or inlining the logic of this function when the task
and/or inode security structures are needed for additional processing). Some of the hook functions
perform additional processing. The hook functions and the initial permission that they check are shown
in Table 33. Any additional processing for the hook functions, excluding the optional extended socket
call processing, is then described in the following subsections.

Table 33. Socket Layer Hook Permission Checks

Hook Function Source Target Permission

selinux_socket_create Current NewSocket create

selinux_socket_bind Current Socket bind

selinux_socket_connect Current Socket connect

selinux_socket_listen Current Socket listen

selinux_socket_accept Current Socket accept

selinux_socket_sendmsg Current Socket write

selinux_socket_recvmsg Current Socket read

selinux_socket_getsockname Current Socket getattr

selinux_socket_getpeername Current Socket getattr

selinux_socket_setsockopt Current Socket setopt

selinux_socket_getsockopt Current Socket getopt

selinux_socket_shutdown Current Socket shutdown
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17.3.2.1. selinux_socket_bind

Theselinux_socket_bind hook function performs an additionalname_bind permission check
between the socket and the SID associated with the port number for ports that are outside the range used
to automatically bind.

17.3.2.2. selinux_socket_sendmsg

Prior to returning, this hook function calls the NSID hooknsid_sock_sendmsg to adjust the maximum
segment size (MSS) for the IP packet to account for the IP options. SeeSection 20for a description of
the NSID functions.

17.3.3. selinux_socket_sock_rcv_skb (Transport Layer Hook)

This hook function is called by the transport layer network protocols (e.g. UDP, TCP, raw IP, etc) to
control receipt of individual packets on a socket at a point where the destination socket and the receiving
network device information is available. Unlike the previously discussed socket hook functions, this
hook is passed a pointer to a kernel socket (sock) structure rather than a socket structure. This hook
function must first dereference thesocket field of the sock structure and then dereference theinode
field of the resulting socket structure in order to obtain security information about the receiving socket.
However, security information is not always available. If the socket is in a TCPTIME_WAIT state, then
the sock structure pointer actually refers to a tcp_tw_bucket structure. The tcp_tw_bucket structure does
not contain asocket field, so thesocket field cannot be accessed in this case. In other cases, the
socket field can be accessed but may beNULL, indicating that the socket has not yet been associated
with an active user socket. In these cases, the hook function merely returns success. Further study of
these cases is needed to determine whether this behavior is safe.

After obtaining the socket security information, the hook function must also obtain security information
for the packet (network buffer). If no receiving network device is set for the packet, then the hook
function merely returns success, since this implies that the communication is local and this hook function
is not applicable. Otherwise, if the network buffer is still unlabeled, then this hook initializes the network
buffer to the default message SID for the receiving network device. Normally, the network buffer is
labeled during IP input processing, but an unlabeled network buffer might reach this hook if the kernel
was configured without the LSM IP hooks or if SELinux was dynamically inserted into a running kernel
with network buffers that had already been processed by the IP layer.

The hook function then checksrecvfrom permission between the socket and the packet’s source socket
SID to control the receipt of the packet on the socket. Depending on the type and state of the socket and
the kind of packet, additional processing may be performed. The additional processing is described
below, and the additional permission checks are shown inTable 34. The optional extended socket call
processing is described separately inSection 17.4.

If the socket is a TCP socket in theTCP_LISTEN state (server) and the packet has theSYNbit set, then
theacceptfrom permission is checked between the listening socket SID and the packet’s source socket
SID (i.e. the client socket SID). If the socket is a TCP socket in theTCP_SYN_SENTstate (client) and the
packet has theACKor SYNbits set (without theRSTbit), then theconnectto permission is checked
between the client socket SID and packet’s source socket SID (i.e. the server socket SID).

54



Implementing SELinux as a Linux Security Module

Table 34. Connection Establishment Permission Checks

Socket State Packet
Bits

Source Target Permission

TCP_LISTEN SYN ListeningSocket ClientSocket acceptfrom

TCP_SYN_SENT ACK
SYN

ClientSocket ServerSocket connectto

17.3.4. Hooks for Unix Domain Socket IPC

LSM places calls to two hooks,unix_stream_connect andunix_may_send , within the Unix domain
socket code to provide consistent control over Unix domain socket IPC. These hooks are placed into the
Unix domain socket code in order to have access to the destination socket, which is not available to the
socket layer hooks. For sockets that use the file namespace, the inode hook functions could be used to
control IPC, but this would not address sockets that use the abstract namespace. Hence, these two hooks
were added by LSM.

Theselinux_socket_unix_stream_connect hook function is called for Unix stream connections.
It checks theconnectto permission between the client socket and the listening socket. The
selinux_socket_unix_may_send hook function is called for Unix datagram communications. It
checks thesendto permission between the sending socket and the receiving socket. These permission
checks are summarized inTable 35.

Table 35. Unix Domain Permission Checks

Hook Source Target Permission

unix_stream_connect ClientSocket ServerSocket connectto

unix_may_send SendingSocket ReceivingSocket sendto

17.4. Extended Socket Call Processing

The original SELinux kernel patch implemented a set of extended socket calls that could be used to
specify and obtain SIDs for sockets, connections, and datagrams. The implementation of these calls for
the LSM-based SELinux module is not yet complete and several unresolved issues still remain. The calls
and their processing can be completely disabled via a separate kernel configuration option without any
affect on the enforcement of the network policy by the kernel. No applications have been modified yet to
use these calls, so they can be disabled without harm for now.

This section describes the current state of the extended socket call implementation in the SELinux
module. The extended socket call processing is implemented within inline functions defined in the
extsocket.h file. These functions are called by the appropriate hook functions. This section begins by
describing the fields added to the inode security and open request structures to support the extended
socket calls. It then describes each of the inline functions inextsocket.h .
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17.4.1. Extended Inode Security Structure

When the extended socket call option is enabled, the inode_security_struct structure is extended to
include additional fields related to the extended socket calls. The additional fields are defined as shown
below.

security_id_t msid; /* SID of message on the socket */
security_id_t dsid; /* SID of desired destination socket */
security_id_t peer_sid; /* SID of the peer socket */
security_id_t newconn_sid; /* SID to use for new connections */
int useclient; /* Use client SID for connections */
access_vector_t conn_perm; /* connection permission */

Table 36. Extended inode_security_struct

Field Description

msid Message SID.

dsid Destination socket SID.

peer_sid SID of the peer socket.

newconn_sid SID for new connection sockets.

useclient Flag indicating to use client SID for new connection sockets.

conn_perm Connection permission for revalidation.

17.4.2. Open Request Security Structure

When the extended socket call option is enabled, the open_request_security_struct structure is available.
This structure is used to store security information for during connection requests, before the new socket
is created.

struct open_request_security_struct {
unsigned long magic; /* magic number for this module */
struct open_request *req; /* back pointer to open request object */
struct list_head list; /* list of open_request_security_struct*/
security_id_t newconn_sid; /* SID of the new connection */

};

Table 37. open_request_security_struct

Field Description

magic Module id for the SELinux module.

sk Back pointer to the associated open_request structure.

list Pointer used to maintain the list of allocated open_request security structures.

peer_sid SID of the new connection; either the listening socket SID, or the client SID

56



Implementing SELinux as a Linux Security Module

17.4.3. Extended Socket Functions

The optional hook function processing for the extended socket calls is implemented in a set of inline
functions inextsocket.h . Each function is described below.

17.4.3.1. extsocket_open_request_alloc_security

Allocate and initialize the open_request_security_struct security structure for the open request kernel
object. Called byselinux_open_request_alloc_security .

17.4.3.2. extsocket_open_request_free_security

Free the open_request_security_struct security structure for the open request kernel object. Called by
selinux_open_request_free_security .

17.4.3.3. extsocket_init

This function is called byinode_alloc_security to initialize the additional fields as necessary. The
socket peer SID field is set to theany_socket initial SID.

17.4.3.4. extsocket_create

This function is called byselinux_socket_create andselinux_socket_post_create to obtain
the SID for the new socket. If thesocket_secure call was used, then the SID given in that call is
returned. Otherwise, the SID of the creating task is returned. If the extended socket option is disabled,
then this function always returns the SID of the creating task.

17.4.3.5. extsocket_connect

This function is called byselinux_socket_connect . If a particular destination socket SID was
specified via theconnect_secure call, then additional processing is performed. If the socket is an
INET socket, then an additionalenforce_dest permission check is performed between the destination
socket SID and the destination node SID. This check ensures that the destination node is trusted to
enforce the restriction on the destination socket. For all sockets, the destination socket SID is copied to
thedsid field of the socket’s inode in order to pass it to theextsocket_skb_set_owner_w function
for labeling the outgoing packet. The peer SID of the socket is also set to the destination socket SID.

17.4.3.6. extsocket_listen

This function is called byselinux_socket_listen . If both a new connection SID and the useclient
flag are set, then an error is returned. For non-stream sockets, use of the client SID is not supported, so an
error is returned. Also, if the new connection SID is given and is not equal to the socket SID, and error is
returned. Otherwise, the socket’s use client flag is cleared and the new connection SID is set to the socket
SID. No further processing is performed for non-stream sockets.

For stream sockets, if a new connection SID was specified vialisten_secure , then an additional
newconn permission check is performed between the socket SID and the new connection SID. The new
connection SID is then copied into the socket’s new connection SID. Otherwise, the socket new
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connection SID is set to the SID of the socket. The use client flag is also copied into the socket’s
useclient field.

17.4.3.7. extsocket_accept

This function is called byselinux_socket_accept to set the connection permission of the new socket
to acceptfrom for subsequent revalidation.

17.4.3.8. extsocket_post_accept

This function is called byselinux_socket_post_accept . The peer SID of the new connection
socket is set to the peer SID field of the kernel socket. This field was set during
extsocket_tcp_create_openreq_child for INET sockets, or during
extsocket_unix_stream_connect for Unix sockets. If the listening socket’s use client flag is set,
then the SID of the new connection socket is changed to the peer SID, i.e. the client socket SID. The peer
SID is also copied into the out SID array of the current task, so that it is accessible to the
accept_secure system call and can be passed back to the application.

17.4.3.9. extsocket_sendmsg

This function is called byselinux_socket_sendmsg . If the socket is a stream socket, then this
function verifies that the message SID and destination socket SID are valid if they were specified using
the extended socket calls. For stream sockets, the message SID must equal the sending socket SID, and
the destination socket SID must equal the peer SID. For TCP sockets, this function also revalidates the
connection permission between the socket and its peer. For client sockets, the connection permission and
the peer SID are set during connection establishment byextsocket_sock_rcv_skb . For server
sockets, the connection permission is set byextsocket_accept and the peer SID is set by
extsocket_post_accept .

If the socket is a non-stream socket and a message SID was specified, thensend_msg permission is
checked between the socket SID and the message SID. If the socket is a non-stream INET socket (e.g.
UDP, raw IP), then this function also checkssendto permission between the socket and the destination
socket SID. By default, the destination socket SID is set to the peer SID for the socket, which defaults to
theany_socket initial SID unless specified by a priorconnect_secure call. If a particular destination
socket SID was specified viasend*_secure , then theenforce_dest permission is checked between
the destination socket SID and the destination node SID.

For all sockets, the destination socket SID, if specified, is copied to thedsid field of the socket’s inode
security structure in order to pass it to theextsocket_skb_set_owner_w function for labeling the
outgoing packet. For non-stream sockets, the message SID is similarly copied to themsid field if it was
specified.

[XXX Need to bind the (msid, dsid) pair to the particular message in some manner so that
extsocket_skb_set_owner_w can ensure that it is only applied to the corresponding network buffers.
Possibly maintain a list of (message identifier, msid, dsid) triples on the socket in the
extsocket_sendmsg function that can be consumed byextsocket_skb_set_owner_w , but not
clear how to identify the message uniquely and consistently across both functions. Possibly bind security
data to struct msghdr via a security field or control data, but a security field would break application
compatibility (msghdr is an exported structure) and control data may interfere with application-specified
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control data. The original SELinux kernel patch required invasive changes to propagate the SIDs down to
the skb allocation.]

17.4.3.10. extsocket_recvmsg

This function is called byselinux_socket_recvmsg . For stream sockets, this function copies the peer
SID into both elements of the out SID array of the current task’s security structure so that the
recv*_secure calls can return this SID as the source socket SID and message SID to the application.
For datagram sockets, the SIDs are copied from the individual datagram by the
extsocket_skb_recv_datagram function.

17.4.3.11. extsocket_getsockname

This function is called byselinux_socket_getsockname . This function copies the socket SID into
the out SID array of the current task’s security structure so that the socket SID can be returned via the
getsockname_secure extended system call.

17.4.3.12. extsocket_getpeername

This function is called byselinux_socket_getpeername . This function copies the peer socket SID
into the out SID array of the current task’s security structure so that the peer socket SID can be returned
via thegetpeername_secure extended system call. For client sockets, the peer SID are set during
connection establishment byextsocket_sock_rcv_skb . For server sockets, the peer SID is set by
extsocket_post_accept .

17.4.3.13. extsocket_sock_rcv_skb

This function is called byselinux_sock_rcv_skb . If the socket is a TCP socket in theTCP_LISTEN

state (server socket) and the packet has theSYNbit set, then a connection is being requested, and several
checks are performed. If the listening socket was set to use the client socket SID for new connection
sockets (via alisten_secure call on the server), then thenewconn permission is checked between the
listening socket SID and the packet’s source socket SID (i.e. the client socket SID) to ensure that the
listening socket is allowed to create a new connection socket with the same SID as the client socket.

At this point, the new connection SID will be either the client SID (when the listening socket was set to
use client) or the listening socket SID. Next, theacceptfrom permission is checked between the new
connection SID and the SID of the packet.

If the packet’s destination socket SID is set (due to aconnect_secure call on the client) and this SID
does not match the listening socket’s new connection SID, the connection is refused. (XXX The listening
socket’s peer SID is set to the packet’s source socket SID, but this will be overwritten by subsequent
connections. This is unreliable.)

If the socket is a TCP socket in theTCP_SYN_SENTstate (client socket), and the packet has theACKor
SYNbits set (without theRSTbit), then the client is receiving connection acknowledgment from the
server. Several checks are made and the peer SID is saved. If the socket’s peer SID is set (via a
connect_secure call) and this SID does not match the source socket SID of the packet, then the
connection is reset. This check parallels the server-side check for the same condition. The client socket’s
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peer SID is set to the source socket SID of the packet, and the connection permission is set to
connectto for subsequent revalidation.

If the TCP socket is in theTCP_ESTABLISHEDstate, then the connection permission (either
acceptfrom or connectto ) is revalidated so that policy changes can be reflected by the permission
checks.

For non-stream sockets, if the packet’s destination socket SID is set (viasend*_secure ) and it does not
match the receiving socket’s SID, then the packet is rejected. Likewise, if the receiving socket’s peer SID
has been set (viaconnect_secure ), and it does not match the source socket SID of the packet, then the
packet is rejected.

17.4.3.14. extsocket_tcp_connection_request

This hook is called byselinux_tcp_connection_request . The purpose of this hook is to set the
new connection SID for the open request associated with the requested connection. If the listening socket
is set to use the client SID on new connections, the new connection SID is set to the SID of the packet
that initiated the connection request. In this manner the SID of the new server socket will be reliably set
with the client SID when multiple connections are being established on a busy server socket. Otherwise,
new connection SID is set to the listening socket’s new connection SID.

17.4.3.15. extsocket_tcp_synack

This hook is called byselinux_tcp_synack to label the outgoing network packet for the SYN/ACK
with the new connection SID taken from the open request structure. This SID was set by the
extsocket_tcp_connection_request hook.

17.4.3.16. extsocket_tcp_create_openreq_child

This function is called byselinux_tcp_create_openreq_child . When the listening socket is set to
use the client SID for new connections, this hook sets the SID of the newly created kernel socket to the
SID from the open request structure. This SID is used to label outgoing packets from a socket that has no
user space socket structure associated with it (as can happen during the socket shutdown operation). The
hook also copies the SID of the network packet that established the connection into the kernel socket
peer SID field. This peer SID is used byextsocket_post_accept to reliably set the peer SID of the
user socket structure.

17.4.3.17. extsocket_unix_stream_connect

This function is called byselinux_unix_stream_connect . If the listening socket was set to use the
client socket SID for new connection sockets (via alisten_secure call on the server), then the
newconn permission is checked between the listening socket SID and the client socket SID to ensure that
the listening socket is allowed to create a new connection socket with the same SID as the client socket.
If the new connection SID does not match the listening socket SID, then theconnectto permission is
rechecked based on the new connection socket SID rather than the listening socket SID. If the destination
socket SID is set (due to aconnect_secure call on the client) and this SID does not match the new
connection socket SID, then access is denied. The peer SID of the kernel socket associated with the new
connection is set to the sending socket SID. This peer SID can be used byextsocket_post_accept to
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reliably set the peer SID of the user socket structure. The connection permission is set for subsequent
revalidation [XXX Revalidation for Unix stream traffic is not yet implemented].

17.4.3.18. extsocket_unix_may_send

This function is called byselinux_unix_may_send . If the receiving socket’s peer SID has been set
(via connect_secure ), and it does not match the sending socket SID, then access is denied. Likewise,
if the destination socket SID is set (viasend*_secure ) and it does not match the receiving socket’s
SID, then access is denied.

17.4.3.19. extsocket_skb_set_owner_w

This function is called byselinux_skb_set_owner_w . If the message SID (non-stream only) or
destination socket SID are set for the socket, then these SIDs are copied into the network buffer and then
cleared from the socket. These SID fields in the socket’s inode security structure are set during
selinux_socket_sendmsg . [XXX This is unreliable, seeSection 17.4.3.9.]

17.4.3.20. extsocket_skb_recv_datagram

This function is called byselinux_skb_recv_datagram . This function copies the SIDs from a
network buffer into the out SID array of the task security structure when a datagram is received by a task.
This enables the extended socket calls to return these SIDs to applications.

18. Network Buffer Hook Functions
LSM provides a set of hooks for maintaining and propagating security information for network buffer
structures (struct sk_buff). A security field was added to this structure, and the hooks provide methods
for allocating, cloning, copying, and freeing this security field. The basic lifecycle hook functions are:

• selinux_skb_alloc_security : Allocates and assigns a security structure to a new network buffer.

• selinux_skb_clone : Sets the security field on a newly cloned buffer and increments the reference
count.

• selinux_skb_copy : Copies the security structure to a newly copied buffer.

• selinux_skb_free_security : Decrements the reference count and, if zero, frees the security
structure.

These basic hooks are not discussed further. In addition to these basic hooks, two other hooks are
provided:selinux_skb_set_owner_w andselinux_skb_recv_datagram . The remainder of this
section describes the network buffer security structure and the implementation for these two hooks.
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18.1. Network Buffer Security Structure

The skb_security_struct structure contains security information for network buffers. This structure is
defined as:

struct skb_security_struct {
unsigned long magic; /* magic number for this module */
struct sk_buff *skb; /* back pointer */
struct list_head list; /* list of skb_security_struct */
__u8 opts; /* Bitmap of current options */
__u8 mapped; /* Bitmap of mapped SIDs */
__u8 invalid; /* Security state invalidated */
atomic_t use; /* reference count */
__u32 serial; /* Policy ID used to label datagram */
security_id_t ssid; /* Source SID */
security_id_t msid; /* Message SID */
security_id_t dsid; /* Destination SID */
void *data; /* Implementation specific data */

};

Table 38. skb_security_struct

Field Description

magic Module id for the SELinux module.

skb Pointer to the SKB this structure belongs to.

list Pointer used to maintain the list of allocated SKB security structures.

opts Bitmap of flags indicating current packet labeling options.

mapped Bitmap of flags indicating currently mapped remote SIDs.

invalid Flag indicating that the security state of the SKB is invalid.

use Reference count for the security structure.

serial The policy serial number.

ssid The SID of the source socket.

msid The SID of the message; sockets that maintain message boundaries may label each
message.

dsid The desired SID of the destination socket.

data Opaque pointer to data that may be associated with the SKB. Not currently used.

SeeSection 20, Section 19, andSection 17.3.3for a discussion of how these fields are used by the
labeled networking support, the IP hooks, and thesock_rcv_skb hook.

18.2. selinux_skb_set_owner_w

This hook sets the SID fields in a network buffer for an outgoing packet when the buffer is associated
with a particular sending socket. The SID fields can then be used for permission checks and other
processing related to the buffer. If labeled networking is used for the outgoing packet, then the SID fields
are copied into the IP option by theselopt_ip_label_output function.
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If the sending socket has no associated user socket, and the socket is a TCP socket, then the network
buffer source and message SIDs are set to the kernel socket SID. Otherwise, no further determination is
possible and the network buffer is left unlabeled.

If the sending socket has an associated user socket, but there is no inode security structure, then the
network buffer’ source and message SIDs are assigned either the TCP reset socket SID or the ICMP
socket SID based on its family and protocol, and this hook returns. This logic handles kernel created
sockets, since they are not caught by the LSM hooks.

Where there exists a inode for the socket, the source socket SID and message SID for the network buffer
are set by default to the SID of the sending socket. However, the extended socket calls may change the
SIDs used for the network buffer. SeeSection 17.4.3.19for a discussion of the optional extended socket
call processing.

18.3. selinux_skb_recv_datagram

This hook calls theextsocket_skb_recv_datagram function to perform the processing necessary for
the extended socket calls.

19. IPv4 Networking Hook Functions
The SELinux IPv4 networking hook function implementations perform network layer access controls for
outgoing and incoming packets. Many of these hooks are implemented by using the existing Linux
kernel Netfilter framework, thereby minimizing the need for new hooks in the network protocol
implementation. These hooks may use the security fields associated with network buffers (struct
sk_buff), network devices (struct net_device), and sockets (the associated struct inode).

19.1. Netfilter-based Hook Functions

LSM allows a security module to intercept each Netfilter hook twice; both before and after the packets
have passed through the standard kernel packet filtering mechanisms. Correspondingly, for each of the
five types of NetFilter hooks, there are two LSM hooks registered. The hook name is suffixed with either
_first or _last as appropriate. These hook functions follow the conventions of the Netfilter hooks
rather than the conventions of other LSM hooks; hence, these hooks must returnNF_ACCEPTto allow the
packet through andNF_DROPto reject the packet.

19.1.1. selinux_ip_input_helper

This helper function is used by theselinux_ip_preroute_last andselinux_ip_input_last

hooks to perform some functions common to those two hooks. This function takes as parameters the
network buffer, the network buffer’s security structure, and the receiving network device. If the network
buffer is unlabeled, then this hook initializes the source socket SID and message SID to the default
message SID of the receiving network device.

The hook function then uses thesecurity_node_sid interface of the security server to obtain the SID
associated with the source node (host) for the packet. It then checks a permission (based on the protocol
type) between the network buffer and the receiving network interface and a permission between the
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network buffer and the source node. The permission checked for each protocol type is shown inTable 39.

Table 39. Packet Receive Permissions

Protocol Permission

UDP udp_recv

TCP tcp_recv

other rawip_recv

19.1.2. selinux_ip_preroute_last

This hook function intercepts incoming packets after they have been received on the network interface,
but prior to routing. Since it is called after any other Netfilter pre-routing hooks, packets may be
modified or dropped prior to reaching this hook function. Since this hook function is a pre-routing hook,
it is applied to packets that are not locally destined as well as those that are. The
selinux_ip_input_helper function is called to initialize the network buffer SIDs and to check
permissions for all received packets.

19.1.3. selinux_ip_input_first

This hook function intercepts incoming packets that are locally destined. It calls the NSID hook
nsid_ip_map_input to map any remote SIDs saved in the network buffer security structure by
selinux_ip_decode_options to local SIDs. SeeSection 20for a description of the NSID functions.

19.1.4. selinux_ip_input_last

This hook function intercepts incoming locally destined packets after remote SIDs have been mapped. If
the packet did not have a CIPSO label, then this hook does nothing, since all of the necessary processing
was performed byselinux_ip_preroute_last . Otherwise, this hook function calls
selinux_ip_input_helper again on the network buffer to recheck permissions based on the mapped
SIDs.

19.1.5. selinux_ip_output_first

This hook function will returnNF_DROPfor packets labeled as invalid in the network buffer security
structure. Otherwise, thensid_ip_label_output hook is called to set the labels in the outgoing IP
packet from the network buffer SIDs. SeeSection 20for a description of the NSID functions. The result
from this function call is returned by the hook.

19.1.6. selinux_ip_postroute_last

This hook intercepts outgoing packets after network routing, just before being put on the wire. Since it is
called after any other Netfilter post-routing hooks, packets may be modified or dropped prior to reaching
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this hook function. This hook function must obtain security information for the destination node (host). It
uses thesecurity_node_sid interface of the security server to obtain the SID associated with the
destination node.

This hook function then checks a permission (based on the protocol type) between the network buffer
and the sending network device. It also checks the same permission between the network buffer and the
destination node. The permission checked for each protocol type is shown inTable 40. The SID used in
these checks is the message SID stored in the network buffer security structure. In the case of forwarded
packets, this SID was initialized by theselinux_ip_preroute_last hook during input processing.
For locally generated packets, theselinux_skb_set_owner_w hook sets the message SID.

Table 40. Packet Send Permissions

Protocol Permission

UDP udp_send

TCP tcp_send

other rawip_send

19.1.7. Unused NetFilter-based Hooks

The SELinux security module does not currently use the remaining Netfilter-based hooks. The following
list of hook functions simply returnNF_ACCEPT:

• selinux_ip_preroute_first

• selinux_ip_forward_first

• selinux_ip_forward_last

• selinux_ip_output_last

• selinux_ip_postroute_first

19.2. IP Packet Lifecycle Hooks

A small number of additional hooks are provided for IP packet lifecycle events; they allow validation and
propagation of security attributes at various times during IP packet processing. These hooks are called
when IP packets are fragmented and defragmented, encapsulated and decapsulated, and when IP security
options need to be processed. Since these hook calls are not implemented via Netfilter, they follow the
conventions of the normal LSM hooks, returning0 on success.

19.2.1. selinux_ip_fragment

This hook copies the network buffer security information from the existing buffer to the new buffer when
the IP packet is being fragmented.
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19.2.2. selinux_ip_defragment

This hook calls the NSID hooknsid_ip_defragment to handle any special processing needed when
IP packets are defragmented. SeeSection 20for a description of the NSID functions. The result of the
call to nsid_ip_defragment is returned.

19.2.3. selinux_ip_decode_options

This hook function callsnsid_ip_decode_options . SeeSection 20for a description of the NSID
functions. The result of the call tonsid_ip_decode_options is returned by this hook.

19.2.4. Unused IP Packet Lifecycle Hooks

The SELinux security module does not currently use the remaining IP packet lifecycle hooks. The
following list of hook functions simply return success:

• selinux_ip_encapsulate

• selinux_ip_decapsulate

20. Network Packet Labeling
SELinux can optionally be built with support for labeled networking via CIPSO/FIPS-188 IP Options.
The Network SID (NSID) API provides a general framework for labeled networking for SELinux. Selopt
is a particular implementation of this API that provides labeled networking for SELinux using
CIPSO/FIPS-188 IP Options. The NSID and Selopt components were contributed to SELinux by James
Morris. This section provides a brief discussion of the NSID API and Selopt, drawing from the existing
documentation in [MorrisSeloptOverview2002].

20.1. NSID API

The Network SID (NSID) API provides a general framework for labeled networking that is intended to
be independent of the underlying mechanism. The NSID interfaces called by SELinux are:

• nsid_sock_sendmsg : Adjust effective MSS for outgoing TCP data segments if necessary for
network security labels. Called byselinux_socket_sendmsg .

• nsid_ip_label_output : Adds network security labels to outgoing packets based on the security
structure of the associated network buffer. Called byselinux_ip_output_first .

• nsid_ip_decode_options : Decodes network security labels on incoming packets into the security
structure of the associated network buffer. Called byselinux_ip_decode_options .

• nsid_ip_map_input : Maps remote security labels on incoming packets to local security labels.
Called byselinux_ip_input_first .
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• nsid_ip_defragment : Validates the security labels on incoming fragments so that the security
information for a packet is consistent across the fragments.

The NSID component implements dummy operations for each of the NSID functions that provide the
default implementations until a particular NSID implementation is registered viansid_register_ops .
The Selopt component registers its own operations during initialization, replacing these dummy
operations.

20.2. Selopt

Selopt implements the NSID API using CIPSO/FIPS-188 IP options as the underlying mechanism for
passing SIDs across the network. Selopt provides mechanisms for:

• Labeling IPv4 packets with local SIDs

• Specifying which packets require labeling

• Decoding labels from peers

• Mapping remote SIDs to local SIDs

Selopt adds the concept of a security perimeter to SELinux. A security perimeter is a group of trusted
peers that have equivalent security policies. Security policies are equivalent if the security attribute
spaces are identical and have the same meanings on each system. Hosts can be added to or removed from
the perimeter at any time by using thept utility. Outgoing packets to a host within the perimeter will be
labeled. Incoming packets from a host within the perimeter must be labeled or they will be dropped.
Labeled packets from hosts outside of the parameter will be dropped.

Since Selopt labels outgoing packets with local SIDs in the IP option and SIDs have only local meaning,
a mapping mechanism is required to translate remote SIDs to local SIDs for incoming packets. To
support such translation, a Security Context Mapping Protocol (SCMP) was defined that allows a peer to
request a security context for a given SID. This protocol is described in [MorrisSCMP2001]. The
security context can then be translated to a local SID by the local security server and stored in a network
SID mapping cache. A daemon calledscmpd implements the SCMP protocol.

Selopt defines up to three SIDs that can be included in the IP option. These SIDs are copied from the
network buffer security structure for outgoing packets, and copied into the network buffer security
structure for incoming packets. The complete list of Selopt security parameters is:

• Bypass : A flags indicating that the packet is implicitly labeled. The SCMP packets don’t have
security labels and will have this flag set.

• Serial : 32-bit policy serial number

• SSID: 32-bit source socket SID

• MSID: 32-bit message SID

• DSID: 32-bit destination socket SID
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20.2.1. selopt_ip_label_output

This function adds security labels to the IP packet by copying the SIDs from the network buffer security
structure into the IP packet’s options. However, if the packet destination is not in the perimeter, or is
local, the packet is not labeled. The SSID is always set in the IP option. The MSID is only set if it differs
from the SSID. The DSID is only set if it was specified.

20.2.2. selopt_ip_map_input

This function will returnNF_DROPfor any packet from outside the perimeter that is labeled, and for any
unlabeled packet from within the perimeter. Otherwise, mapping of the packet SIDs is attempted.

Any packet that has theBypass flag set in the options is accepted without mapping. Packets that have a
local source address are also accepted without mapping. The packet SIDs are mapped by first checking
the peer cache for a previous mapping (the “fast” path). If the cache lookup succeeds, then the packet is
accepted. Otherwise, a map request is sent to the cache manager (the “slow” path), andNF_QUEUEis
returned. In this case, the Netfilter logic will call theselopt_queue_handler funtion to queue the
network buffer. When the reply message is received for the map request, Selopt will reinject the network
buffer by calling the Netfilter functionnf_reinject . Processing of the SKB will then continue on to
the next Netfilter hook.

20.2.3. selopt_ip_decode_options

This function will decode the security labels from the options field of the IP packet header. For packets
that are not being delivered to the local host, this function returns without decoding the options.
Otherwise, the Selopt policy serial number, source SID, message SID, and destination SID are copied
from the packet options field into the SKB security structure.

20.2.4. selopt_ip_defragment

This function is used verify security labels across IP fragments. At this time, labeled fragments are not
supported, so this function prints a warning message to the system log and returns success.

20.2.5. selopt_sock_sendmsg

Before an IP packet with options can be sent out, the maximum segment size (MSS) must be adjusted.
This function is called by theselinux_socket_sendmsg hook function to adjust the size of the MSS
to account for the presence of Selopt security labels in the IP options field.

21. Network Device Hook Functions
The SELinux network device hook function implementations manage the security fields of network
device structures (struct net_device). At present, LSM only provides a single hook function that is called
when a network device is unregistered. The LSM project decided that it would be too invasive to provide
hooks in all locations where network devices were probed or initialized. Hence, security modules are

68



Implementing SELinux as a Linux Security Module

expected to allocate and initialize the security field on the first access to the device. This section
describes the network device hook and helper functions.

21.1. Managing Network Device Security Fields

21.1.1. Network Device Security Structure

The netdev_security_struct structure contains security information for network devices. This structure is
defined as follows:

struct netdev_security_struct {
unsigned long magic;
struct net_device *dev;
struct list_head list;
security_id_t sid;
security_id_t default_msg_sid;
avc_entry_ref_t avcr;

};

Table 41. netdev_security_struct

Field Description

magic Module id for the SELinux module.

dev Back pointer to the associated network device.

list Pointer used to maintain the list of allocated network device security structures.

sid SID for the network device.

default_msg_sid SID used for unlabeled messages received on this network device.

avcr AVC entry reference.

21.1.2. netdev_alloc_security and netdev_free_security

Thenetdev_alloc_security andnetdev_free_security helper functions are the primitive
allocation functions for network device security structures. These functions perform the usual processing
for allocating and freeing security structures.

21.1.3. netdev_precondition

This helper function is the precondition function for network device security structures. If the network
device security structure is not already allocated, this function callsnetdev_alloc_security to
allocate one. It then calls thesecurity_netif_sid interface of the security server to obtain a device
SID and a default packet SID for the network device. The default packet SID is used for incoming
packets received on the network device unless a packet labeling mechanism was used. This precondition
function is called by the IPv4 networking hook functions prior to accessing the network device security
structure.
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21.1.4. selinux_netdev_unregister

This hook function is called when a network device is unregistered. It callsnetdev_free_security to
free the security structure.

22. Module Hook Functions
At present, the SELinux module hook function implementations do nothing. Module operations are
controlled by the security policy by limiting the use of the CAP_SYS_MODULE capability via the
selinux_capable hook function. If finer-grained controls are later determined to be worthwhile (e.g.
controls based on the actual name or content of the module), then additional access controls could be
implemented in these hook functions. The hook functions are:

• selinux_module_create_module

• selinux_module_init_module

• selinux_module_delete_module

23. System Hook Functions
The remaining LSM hooks are defined directly in the top-level struct security_operations. Most of these
hooks are used to control Linux system operations. This section describes the SELinux hook function
implementations for these system hooks.

23.1. Capability-Related System Hook Functions

23.1.1. selinux_capable

This hook function is called by the kernel to determine whether a particular Linux capability is granted
to a task. After calling the secondary security module to perform the ordinary Linux capability test or
superuser test, this hook function calls thetask_has_capability helper function to check the
corresponding SELinux capability permission. Hence, the Linux capability must be granted by both the
secondary security module and by SELinux.

23.1.2. selinux_capget

This hook function is called by the kernel to get the capability sets associated with a task. It first checks
capget permission between the current and target tasks. If this permission is granted, it then calls the
secondary security module to obtain the capability sets, since SELinux does not maintain this
information.
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23.1.3. selinux_capset_check

This hook function is called by the kernel to check permission before setting the capability sets
associated with a task or a set of tasks. It checkscapset permission between the current and target
tasks, and also calls the secondary module to permit it to perform any additional capability checking.
However, this check is not always meaningful, since the target task is also set to current if a set of tasks
was specified to thecapset system call.

23.1.4. selinux_capset_set

This hook function is called by the kernel to set the capability sets associated with a task. It also checks
capset permission between the current and target tasks since the target task may have been inaccurate
in theselinux_capset_check hook function. It then calls the secondary module to set the capability
sets, since SELinux does not maintain this information. SELinux does not perform any checks on the
individual capabilities being set, since it revalidates each capability on use in theselinux_capable

hook.

23.1.5. selinux_netlink_send

This hook function is called to save security information for a netlink message when the message is sent.
The kernelcapable function is called to check whether the current task (the sender) has the
CAP_NET_ADMINcapability and the corresponding SELinuxnet_admin permission. If so, then this
capability is raised in the effective capability set associated with the netlink message. Otherwise, the
effective capability set is cleared.

23.1.6. selinux_netlink_recv

This hook function is called to check permission when a netlink message is received. It checks the
effective capability set associated with the netlink message to see ifCAP_NET_ADMINis set.

23.1.7. Summary of Capability-Related Permission Checks

Table 42. Capability-Related Permission Checks

Hook Function Source Target Permission

selinux_capable Task Task CapabilityPermission

selinux_capget Current TargetTask getcap

selinux_capset_check Current TargetTask setcap

selinux_capset_set Current TargetTask setcap

selinux_netlink_send Current Current net_admin
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23.2. System Hook Functions that Defer to Capable

Some system operations are controlled by both thecapable hook and a separate hook that offers
finer-grained control. In many of these cases, the checking performed byselinux_capable is adequate
for SELinux, so no other processing is required.Table 43lists system hook functions for which no
additional processing is required and the capability permission that is used to control the same operation.
Of course, finer-grained permissions may be added to SELinux in the future, e.g. a permission to control
what files can be used for accounting, so these hooks may be used at a later point in time.

Table 43. System Hook Functions that Defer to Capable

Hook Permission Checked by Capable

selinux_sethostname
selinux_setdomainname
selinux_swapoff

sys_admin

selinux_reboot sys_boot

selinux_ioperm
selinux_iopl

sys_rawio

selinux_acct sys_pacct

23.3. System Hook Function for sysctl

23.3.1. Shadow Sysctl Table

The ctl_sid structure is used to map a name from the sysctl namespace to a SID. This structure resembles
the ctl_table structure defined insysctl.h , with entries for the sysctl name (which is an integer), the
associated string from the/proc/sys namespace, and the SID to be used for the entry. The last field is
an optional pointer to a table containing the children of the entry.

A hierarchy of these tables is statically defined in the SELinux security module. Each level of the
hierarchy is an array of ctl_sid entries. The layout corresponds to the hierarchy of ctl_table entries
defined dynamically by the kernel and mapped into the/proc/sys file system. The hierarchy starts with
the ctl_sid_root_table, providing SIDs for the top-level sysctl entries, and having several child tables. For
example, the entry forCTL_KERNhas a pointer to a table (ctl_sid_kern_table) for children of the
/proc/sys/kernel entries.

23.3.2. search_ctl_sid

Thesearch_ctl_sid helper function is used by theselinux_sysctl hook function to search the
ctl_sid_root_table hierarchy for a SID corresponding to a given sysctl entry. The criteria used is that the
ctl_name and procname must both match. Of course, this is only a heuristic and may not guarantee
uniqueness. This function is recursive, and will return the SID corresponding to the ctl_sid table, or the
sysctl initial SID if no match is found.
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23.3.3. selinux_sysctl

This hook function checks permission for the current task to access a sysctl entry. It calls the
search_ctl_sid helper function to obtain the SID associated with the sysctl entry. It then performs a
permission check based on the requested operation, treating the sysctl entry as a directory for search
operations and as a file for read or write operations on a variable.Table 44shows the permission checks
associated with each requested operation.

Table 44. sysctl Permission Checks

Operation Value Source Target Permission

1 Current Entry Search

4 Current Entry read

2 Current Entry write

23.3.4. Comparison with /proc/sys

The labeling of entries in/proc/sys by theprocfs_set_sid function is described inSection
14.1.3.1. This function also uses the shadow sysctl table to determine SIDs for the inodes used to
represent/proc/sys entries. These SIDs are then used in the file permission checks performed by the
inode and file hook functions.

However,procfs_set_sid has certain advantages overselinux_sysctl in determining the SID of
the sysctl entry. It can determine the parent inode of the entry, and it can save a pointer to the appropriate
table in the inode’s security structure. Hence, it only needs to search a single table, and can reliably
identify the entry. Additionally, it can implement inheritance semantics so that the shadow table only
needs to contain entries where the SID changes. To some extent, this could also be implemented in
selinux_sysctl using the proc_dir_entry in the ctl_table. However, this would only work if procfs
was enabled.

23.4. System Hook Function for quotactl

Theselinux_quotactl hook function checks that the current task has permission to perform a given
quota control command on a filesystem. If no filesystem was specified (i.e. aQ_SYNCor Q_GETSTATS

command), then the hook simply returns success, since these operations require no control. Otherwise,
one of thequotamod or quotaget permissions is checked between the current task and the filesystem,
depending on whether the command sets information or merely gets information related to quotas.

23.5. System Hook Function for syslog

Theselinux_syslog hook function checks that the current task has permission to perform a given
system logging command. For operation3, thesyslog_read system permission is checked. For
operations that control logging to the console, thesyslog_console system permission is checked. All
other operations (including unknown ones) are checked withsyslog_mod system permission.
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23.6. System Hook Function for New System Calls

Theselinux_sys_security hook function is called by the genericsecurity system call, which is
used as a multiplexor for new system calls for security-aware applications. However, since SELinux
replaces the entrypoint function for the genericsecurity system call, this hook is unused by SELinux.
SeeSection 9for further discussion.

23.7. Remaining System Hook Functions

Each of the remaining system hook functions performs a simple permission check, as summarized in
Table 45. Theselinux_ptrace hook function also calls the secondary module to permit it to perform
additional capability checking.

Table 45. Remaining System Hook Function Permission Checks

Hook Function Source Target Permission

selinux_ptrace ParentTask ChildTask ptrace

selinux_swapon Current SwapFile swapon

selinux_nfsservctl Current Kernel nfsd_control

selinux_quotaon Current QuotaFile quotaon

selinux_bdflush Current Kernel bdflush
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