Implementing SELinux Support for
NES

James Carter
jwcart2 @epoch.ncsc.mil
Information Assurance Research Group
National Security Agency



The Goal

®* Goal 1s to allow SELi1nux to work over NFS

— Same security controls as a local filesystem
* Correctly handle file and process labels

®* Make access decisions based on those labels

* Goal 1s NOT to solve all the security problems of
NES



What 1s Needed

®* Client and Server must still work with normal
NFS.

* Server must be able to get the security context of
the requesting process on the Client and use it to
make security decisions.

* Client must be able to get and set the security
context of files accessed through NFS.



Interoperability with Normal NES

* Client needs to specity whether to use SELinux
or normal NFS.

— Moditfied mount to add “selinux™ option and
NFS_MOUNT_SELINUX flag

* Server must recognize the difference between a
SELinux and normal NFS request.

— SELinux NFS uses a different RPC program number
(100006 instead of 100003)

— Modified RPC layer to handle more than one program
number



Passing the Security Context of the
Requesting Process

* Security context and 1ts length 1s added to the end
of the RPC header.

— Easy, Fast, and at the RPC layer
* Other ways 1t could have been done

— Use RPC Authentication flavor — limited to 400 bytes
and auth unix was hardcoded at one time.

— Add to each NFS procedure — not at RPC layer



Using the Security Context of the
Requesting Process on the Server

* Added a fssid to struct task_security_struct

* Modified appropriate hook functions to use fssid,
if 1t 18 set.

* RPC layer sets the fssid based on the security
context sent by the Client, processes the request,
and then clears the fssid.

* The Server 1s trusting the Client



Getting and Setting the Security

Context of Files
* Implemented Extended Attribute support for NEFS

* Added getxattr and setxattr NFS procedures

* Extended Attributes over NFS are limited to 1024
bytes, not the normal limit of 65536 bytes.



How Things Work on the Client

* Based on the mount flag:

— Superblock security behavior 1s specified as using
xattrs so the security server will know to use them

— nfs creates a client with the program number and
SELinux nfs procedures

* For every NFS operation, the SELinux NFS
program number 1s used and the security context
of the client process added to request.

* The SELinux NFS procedures add getxattr and
setxattr to the normal NFS procedures



How Things Work on the Server

* Receives a request and recognizes the SELinux
NFES program number

* Gets the client process' security context from the
header and sets the fssid

* Processes the request using the SELinux nfsd
procedures

® (Clears the fssid

®* Returns the result



Other Issues

* nfs getattr procedure does not use vis_getattr, so
it skips the security_inode_getattr check

— Added security_inode_getattr check to NFSD's getattr
procedure and to the encode_post_op_attr function

* Client needs to revalidate the security contexts of
inodes

— Modified nfs_revalidate inode()



Other Issues

* Server will not check permissions for the owner
if the MAY_OWNER_OVERRIDE ftlag 1s set

— Added security_inode_permission() check
* Credential cache on client can cause problems

— Store sid 1n struct rpc_cred and compare the current
sid to the stored sid when searching the cred cache



Testing

* Test all NFS procedures three ways
— Test allow and deny using separate files

— Test allow then deny using the same file

— Test deny then allow using the same file

* All tests work as they should as long as either the
Client or the Server 1s 1in enforcing mode.



Testing — Improper Behavior
* Caching

— Permissive-Enforcing, Allow—Deny:
* nogetattr, noreadlink will fail

— Can create cases were caching will cause the wrong
behavior on read and writes, even with the Client and
Server in Enforcing mode.

* fscreate
— If setfscreatecon() 1s used to create a file with a
specific security context, there will be a short window
where the security context of the file on the server
will be the default security context.



Testing — No Credential Cache Fix

* Enforcing - Enforcing, Deny-Allow:
— access, read, and write fail
* Permissive — Enforcing, Allow-Deny:

— nolookup, noaccess, noread, nowrite, and noreaddir
succeed

* Permissive — Enforcing, Deny — Allow:

— access, read, and write fail

— noreaddir succeeds



Numbers

* Setup for the procedure tests involves creating 32

files, 9 directories, and 2 symlinks
— Normal NFS requires 354 NFS procedures to setup
— SELinux NFS requires 199 additional NFS
procedures (156 getxattr and 43setxattr)
* Running through the procedure test

— SELinux NFS: 86 access and 20 getxattr

— No Credential support: 6 access and 20 getxattr
— No Credential Cache: 142 access and 20 getxattr
— No Revalidation: 86 access and 5 getxattr

* Overall ~1% performance hit



Future

* NFS version 4

* Other network filesystems



