NetSaint Documentation

Version 0.0.7
Last Updated: January 162002
Copyright (c) 1999-2002 Ethan Galstgettsaint@netsaint.org

About NetSaint

[What is NetSaint?
[Systemrequirementg
Known issuep

[Acknowledgementg
[Comments andfeedback
[Downloading the latestversion
|[Other monitoring utilities|

ReleaseNotes

What's new in this version
[Changelog

Installing NetSaint

[Unpacking thedistribution |

[Compiling the programg

[Installing NetSainti

[Directory structure and file locationsg
[Installing the web interfaceg
|[Configuring authorization for the CGls|

Configuring NetSaint

[Configuration overview

[Main configuration file optiong
[Host configuration file optiong

|CGI configuration file optiong

[Verifying the configuration|

Running NetSaint

Starting NetSain{
Stopping and restarting NetSaini

NetSaint Plugins

http://www.netsaint.org/changelog.php

[Standard plugin

[Writing your own pluging

NetSaint Addons
cl status - Console interface for viewing status of monitosedvices
- Web-based administration interface fetSaint

MRTG scripts for graphing NetSaint host and service statosnation
netsaint_statd Perl daemon for monitoring remote hogbrmation

- Daemon and plugin for executing plugins on rentmsts
- Service and plugin for executing plugins on renfaists
- Web-based administration interface fetSaint

Theory Of Operation
[Index

[Determing status and reachability of networkhostg
[Network outage$

Notifications|
[Plugin theory]
[Service checkscheduling

ime periodg

Advanced Topics

[Event handlerg

[External command$

[Indirect host and servicechecks$
|Passive serviceheck$

[Program modes$

[Redundant monitoring]|

[Service checlparallelization|
[Volatile service$

[Notification escalations

[Distributed monitoring]|

[Monitoring service and hostclusterd
[Servicedependencies
|Performancedata|

|[Using the embedded Perinterpreter|
[Databasesupport]

Integration With Other Software

Portsentry - Port scaralerts
- Connection attemgatlerts

[UCD-SNMP (NET-SNMP)} SNMP trapalerts

Developerinformation

Fun Stuff

[Neat hacks andtricks|

Miscellaneous

Frequently Asked QuestiongFAQs
|Securinq NetSain{

[Tuning NetSaint for maximum performancg
[Using macros incommands

[NetSaint statuslevel

[[nformation on the CGIg|

About NetSaint

What Is NetSaint?

NetSaint is a network monitoring application. Or perhaps more correctly, it is a system monitoring
application. It monitors hosts and services (alerting you when things go wrong), but does not perform
traffic anaylsis, packet sniffingtc.

NetSaint was originally designed to run unbewux, although it should work under most other unices as
well. For more information on what OSes NetSaint will and will not run under, see the OS ports page at
[http://www.netsaint.org/ports.php

Some of NetSaint's many featurieslude:

® Monitoring of network services (SMTP, POP3, HTTP, NNTP, PING, etc.)

® Monitoring of host resources (processor load, disk usage, etc.)

e Simple plugin design that allows users to easily develop their own service checks

® Parallelized service checks

® Ability to define network host hierarchy using "parent” hosts, allowing detection of and distinction
between hosts that are down and those that are unreachable

e Contact notifications when service or host problems occur and get resolved (via email, pager, or

user-defined method)

e Ability to define event handlers to be run during service or host events for proactive problem
resolution

e Automatic log file rotation

Support for implementing redundant monitoring hosts

e Optional web interface for viewing current network status, notification and problem history, log file,
etc.

NetSaint inot..

e An SNMP manager
® A security vulnerability assessmeabl

NetSaint is notechnicallya security tool, even though it has been classified in this manner by many

security professionals. Why has it been classified as such you ask? Well, for the benefit of the
non-technical users out there (managers, lawyers, etc.), the reason that NetSaint can be considered to be a
security-related application is the fact that it helps ensure the security of your job and give you peace of
mind. After all, if you walk into the office one morning and find that the web server (for which you are in
charge) was down all night, you just might get your ass fired. Ensaigh

SystemRequirements

The only requirement of running NetSaint is a machine running Linux (or UNIX variant) and a C
compiler.You will probably also want to have TCP/IP configured, as most service checks will be
performed over thaetwork.

http://www.linux.com/
http://www.netsaint.org/ports.php

You arenotrequiredto use the CGls included with the core NetSaint distribution. However, if you do
decide to use them, you will need to have the following softwatalled...

1. A web server (preferrablpachd

2. Thomas Boutell'fgdlibrary version 1.6.3 or higher (required by Btatusma@andirend$CGils)
Licensing

NetSaint is licensed under the terms off{@%U General PubliticenséVersion 2 as published by the
[Free Softwaréoundatiop This gives you legal permission to copy, distribute and/or modify NetSaint
under certain conditions. Read the 'LICENSE’ file in the NetSaint distribution or refalihe versio|

of thelicensgfor moredetails.

Netsaint is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE WARRANTY
OF DESIGN, MERCHANTABILITY, AND FITNESS FOR A PARTICULARPURPOSE.

History

® Version 0.0.7 - 2008ometime...
® Version 0.0.6 - 11/01/2000

® Version 0.0.5 - 04/26/2000

® Version 0.0.4 - 09/02/1999

® Version 0.0.3 - 05/21/1999

® Version 0.0.2p1l - 04/18/1999
® Version 0.0.2 - 04/10/1999

® Version 0.0.1 03/14/1999

Known Issues

NetSaint is still an immature program, so there are bound to be a lot of bugs in it. The current list of
known issues and bugs can be four]atgt://www.netsaint.org/bugs.php

Acknowledgements

Several people have contributed to NetSaint by either reporting bugs, suggesting improvements, writing
plugins, etc. A list of some of the many contributors to the development of NetSaint can be found at
[http://www.netsaint.org/contributors.ghignfortunately, this list is quite of of date. I've been getting so
many bug reports, patches, suggestions, plugins, etc. that | caniigkeep

Comments AndFeedback

| developed NetSaint for my own use. Once | was reasonably happy with it, | decided to release it so that
others could use it. NetSaint is free software, so | don't get any compensation for the hours | spend
working on it. In order to keep more versions coming, all | ask is that you give me some feedback. | need
to know what doesn’t work in the current version and what you want to see in future releases. Positive
feedback is appreciated, as it helps assure me that NetSaint is actually being used and is working for
people. You can reach meradtsaint@netsaint.org

http://www.apache.org/
http://www.boutell.com/gd
http://www.gnu.org/copyleft/gpl.html
http://www.fsf.org/
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://www.netsaint.org/bugs.php
http://www.netsaint.org/contributors.php

Downloading The LatestVersion

You can check for new versions of NetSaint at the following sites:

e |http://www.netsaint.ollg

o |http://www.freshmeat.ngappindex92373825

Other Monitoring Utilities

In case you weren’t aware, there are other network monitoring utilities available besides NetSaint. | think
NetSaint is a pretty good contender, but I’'m obviously biased... Have a look at the competition for
yourself - here are links to a few thiem:

[Angel NetworkMoniton
Autostatup

ig Brothe

he Event MonitoProject

=
m

%I
2
Py
N>
o

etup(French
ocMonito

ozzzzE
<||I9||O o
('DQ.O
Ind | ()
ol[s]|1©
ol |
(@)

37

A

4|3
3
@)

2By
§—|

E

2]
%
3
o

http://www.netsaint.org/
http://www.freshmeat.net/
http://www.freshmeat.net/appindex/1999/04/10/923738250.html
http://www.paganini.net/angel/
http://www.angio.net/consult/autostatus/
http://maclawran.ca/sean/bb-dnld/
http://www.gsyc.inf.uc3m.es/~assman/em/
http://www.hiways.org/
http://www.altara.org/mars.html
http://www.kernel.org/software/mon/
http://www.pasteur.fr/units/sis/netup/
http://www.nocmonitor.net/
http://www.netplex-tech.com/software/nocol/
http://junebug.fhcrc.org/nodewatch/
http://www.molitor.org/overcr/
http://www.communityprojects.org/apps/penemo/
http://pikt.org/
http://www.terravista.pt/Ancora/1883/ritw_e.html
http://wwwhome.cs.utwente.nl/~schoenw/scotty/
http://strobe.weeg.uiowa.edu/~edhill/public/spong/
http://www.sysmon.org/

What's New in Version0.0.7

Important: Make sure you read through the documentation (especia[fA®g) before sending a
guestion to either myself or the mailing lists. | get so much mail that | no longer reply to questions that
have answers found in tRQs...

New Features

1. Tactical Overview CGIl. AjnewCGl has been created serve as a one-stop overview of all monitoring
data. This is particularly useful to people who need to constantly be aware of problems on the
network.

2. Availability Reporting CGI. AjnewCGl has been created to report on the availability of hosts and
services over a user-specified time frame. The availability CGI works in a similiar manner to the
but is much more efficient for generating availability reports for large numbers of
hosts/services.

3. WAP Interface. AjnewCGl has been created to serve as a WAP interface to network status
information. If you have a WAP-enabled phone, you can view current network status (overview,
summary, all problems, or unhandled problems), disable notifications and checks and acknowledge
problems while you're on the go. Coblh?

4. Optional Embedded Perlinterpreter . If you use a lot of Perl scripts for checking services you may
find it helpful to compile NetSaint with an embedded Perl interpreter. The interpreter code
(contributed by Stephen Davies) can be included by usingdhable-embedded-pesption to the
configure script. If you want internally compiled Perl scripts to be cached, addvitieperlcache
option aswell.

5. Optional Processing of Performancéata. NetSaint can now be configured to log or handle host
and service check performance data like check results, check execution time, check latency, and
future performance data metrics provided by the plugins. More information on performance data can
be foundheré

6. Forced ServiceChecks You can now force service checks to be actively executed, regardless of
whether or not checks are enabled on a program-wide or service-specific basis. Forced service checks
also work even during invalid check timeperiods for the specific service. This feature is very useful
when setting ufdistributedmonitoring as you can simply disable service checks on a program-wide
basis and then have thsecwatctdaemofschedule forced checks of services that haven't reported
back in awhile.

7. Acknowledgments WithoutNatifications. You can now acknowledge host and service problems
without having to send an acknowledgement notification to contacts. The option as to whether or not
to send an acknowledgement notification is found in the web interface when issuing the
acknowledgemertommand.

8. Custom Intervals for Notification Escalations You can now specify custom notification intervals
in bothlservicgandhostgrougescalation definitions. This allows escalated notifications to be sent out
at different intervals from the standard notification interval for the service or host. More information
on notification escalations can be folmere

9. Passive Check Submissions via Wdhterface. Passive check results can now be submitted for
services from the web interface. This is quite handy if you want to manually clear a volatile service
that is in a non-OK state (i.e. security alerts that are only recpassively).

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Auto-Save of RetentiorData. You can now have NetSaint automatically save retention data at

specific intervals by using tiretention_update interyaption.

Extended Servicdnformation . You can now associate and icon with and provide a "more

information” URL for services by usifgxtended service infdefinitiong

Scheduled Downtime for Hosts andervices You can now schedule downtime for services and

hosts via the web interface when you expect there to be problems (i.e. scheduled maintenance)
Notifications are temporarily disabled for the affected host(s)/service(s) while the scheduled downtime is
in effect. Notifications are automatically re-enabled when the scheduled downtime passes. More
information on scheduled downtime can be fobed}

ServiceDependenciesPeople have been asking about this for a while now, and I've finally gotten
around to adding it. You can now specify optigd@pendencygefinitiongfor services. Dependencies

are an advanced feature that allow you to repress notifications for and stop the execution of services which
are dependent on one or more other service(s) that have failed in some way. More information on how
service dependencies work can be fdbad

Flap Detection NetSaint can now be optionally configured to detect services and hosts that are
"flapping". Flapping occurs when a service or host changes states too frequently, causing a barrage of
notifications to be sent out. When flap detection is enabled (usifemnéide flap detectipoption),

NetSaint will temporarily suppress notifications for hosts and services that are flapping. When the flapping
stops, NetSaint will re-enable notifications for the affected host or service. More information on how flap
detection and handling works can be folnedé Note: Flap detection is extremely experimental at

this point, so use it withaution...

Aggregated StatudUpdates You can now force NetSaint to only update program, host, and service
status data at specified intervals, rather than every time something changes. This can be helpful in
reducing load in larger installations. Aggregated updates are controlled with the

[aggregate status updatesistatus update interyaptions.

New Macros. A few newmacrofhave been added. A $NOTIFICATIONNUMBERS$ macro (which

can be used in notification commands) has been added to make it easier to write complex scripts for
external notification escalation, etc. Four new macros ($SHORTDATETIMES$, $DATES$, $TIMES$, and
$TIMETS$) have also been added to give you a little flexibility with timestamps in notifications,
eventhandlers, etc. In order to improve logging of performance data, the following macros have been
added: $PERFDATAS, SLASTCHECKS, $SEXECUTIONTIMES, adATENCY$.

User-Supplied Coordinates in Statusmap and StatuswiCGls. Thestatusma@mndstatuswilCGls

have been rewritten to use user-supplied coordinates when drawing hosts. While the statusmap CGI will
still do auto-layout of hosts you're monitoring, the statuswrl CGI will not work if you don’t specify
coordinates! If you want to use either of the CGls, you'll have to supply drawing coordinates for your
hosts by using the 2dy_2d x_3d y_3d andz_3dparameters of thigostextinfo[]definitiong You

can optionally specific an image (in GD2 format) to be used as a background image in the statusmap CGI
by using thé¢statusmap _background _imagtion. You can optionally include other objects in the

VRML world generated by the statuswrl CGI by usinggt@uswrl_includeption. If you want to

create 2-D coordinates for the statusmap CGI by visually dragging hosts around, | would suggest trying
the[Saintmapaddon written by Davi&kmoch.

Optional DatabaseSupport. MySQL and PostgreSQL databases are now supported as an option for
native storage of status, retention, comment, and extended data. More information on compiling the core
program and CGls to use the database routines can bdHergnd

External Command File Changes Theexternal commantile]is now implemented as a named pipe
(FIFO).

20. Configuration Directive Changes Thelog_levelandsyslog_levelirectives that were present in the
[main configfile] of previous versions have been removed, as they are notuseidg
21. Tuning Documentation Some information you might find helpful in optimizing NetSaint can be

foundherg

ScheduledDowntime

Introduction

Starting with release 0.0.7, NetSaint allows you to schedule periods of planned downtime for hosts and
service that you’re monitoring. This is useful in the event that you actually know you're going to be taking
a server down for an upgrade, etc. When a host a service is in a period of scheduled downtime,
notifications for that host or service will Bapressed.

SchedulingDowntime

You can schedule downtime for hosts and service throudgxthido CGI| (either when viewing host or

service information). Click in the "Schedule downtime for this host/service" link to actually schedule the
downtime.Note: Scheduled downtime informationnst preserved across program restarts, so don't
schedule downtime too far in advance unless you know you aren’t going to shut down or restart NetSaint
before that timarrives.

Once you schedule downtime for a host or service, NetSaint will add a comment to that host/service
indicating that it is scheduled for downtime during the period of time you indicated. When that period of
downtime passes, NetSaint will automatically delete the comment that it addedhutiee,

How Scheduled Downtime AffectdNotifications

When a host or service is in a period of scheduled downtime, NetSaint will not allow notifications to be
sent out for the host or service. Supression of notifications is accomplished by adding an additional filter
to thgnotificationlogid You will notsee an icon in the CGls indicating that notifications for that
host/service are disabled. When the scheduled downtime has passed, NetSaint will allow notifications to
be sent out for the host or service as it normatyld.

Overlapping ScheduledDowntime

| like to refer to this as the "Oh crap, its not working" syndrome. You know what I'm talking about. You
take a server down to perform a "routine" hardware upgrade, only to later realize that the OS drivers aren't
working, the RAID array blew up, or the drive imaging failed and left your original disks useless to the
world. Moral of the story is that any routine work on a server is quite likely to take three or four times as
long as you had originallglanned...

Let's take the followingscenario:

1. You schedule downtime for host A from 7:30pm-9:30pm on a Monday

2. You bring the server down about 7:45pm Monday evening to start a hard drive upgrade

3. After wasting an hour and a half battling with SCSI errors and driver incompatabilities, you finally
get the machine to boot up

4. At 9:15 you realize that one of your partitions is either hosed or doesn’t seem to exist anywhere on
the drive

5. Knowing you're in for a long night, you go back and schedule additional downtime for host A from
9:20pm Monday evening to 1:30am Tuestégrning.

If you schedule overlapping periods of downtime for a host or service (in this case the periods were
7:40pm-9:30pm and 9:20pm-1:30am), NetSaint will wait until the last period of scheduled downtime is
over before it allows notifications to be sent out for that host or service. In this example notifications

would be supressed for host A until 1:30am Tuesdasning.

Detectionand Handling of StateFlapping

Introduction

Beginning with release 0.0.7, NetSaint supports optional detection of hosts and services that are
"flapping”. Flapping occurs when a service or host changes state too frequently, resulting in a storm of
problem and recovery notifications. Flapping can be indicative of configuration problems (i.e. thresholds
set too low) or real netwonkroblems.

Before | go any futher, let me say that flapping detection has been a little difficult to implement. How
exactly does one determine what "too frequently" means in regards to state changes for a particular host or
service? When | first started looking into flap detection | tried to find some information on how flapping
could/should be detected. After | couldn't find any, | decided to settle with what seemed to be a reasonable
solution. The methods by which NetSaint detects service and host state flapping are desicnbhed

Service FlapDetection

Whenever a service check is performed that resulthardstat¢or a soft recovery state, NetSaint checks
to see if the services has started or stopped flapping. It does this by storing the results of the last 21 checks
of the service in an array. Older check results in the array are overwritten by newereshiéisk

The contents of the historical state array are examined (in order from oldest result to newest result) to
determine the total percentage of change in state that has occurred during the last 21 service checks. A
state change occurs when an archived state is different from the archived state that immediately precedes it
in the array. Since we keep the results of the last 21 service checks in the array, there is a possibility of
having 20 statehanges.

Image 1 below shows a chronological array of service states. OK states are shown in green, WARNING
states in yellow, CRITICAL states in red, and UNKNOWN states in orange. Blue arrows have been placed
over periods of time where state changesur.

Image 1.
Service State Transitions
Yy v 0y))))

[:E]
"
b

HEEENR [|

Lttt tag

Time = _——

http://www.netsaint.org/docs/0_0_7/images/statetransitions.gif

Services that rarely change between states will have a lower total percentage of change than those that do
change between states a lot. Since flapping is associated with frequent state changes, we can use the
calculated amount of change in state over a period of time (in this case, the last 21 service checks) to
determine whether or not a service is flapping. That's not quite good etimugih...

It stands to reason that newer state changes should carry more weight than older state changes, so we
really need to recalculate the total percent change in state for the service on some sort of curve... To make
things simple, I've decided to make the relationship between time and weight linear for calculation of
percent state change. The flap detection routines are currently designed to make the newest possible state
change carry 50% more weight than the oldest possible state change. Image 2 shows how more recent
state changes are given more weight than older state changes when calculating the overall or total percent
state change for a particular service. If you really want to see exactly how the weighted calculation is

done, look at the code base/flapping.c.

Image 2.

Weighted State Transitions

Weight
sSa=
[--1—1,%]

Time = ——

Let's look at a quick example of how flap detection is done. Image 1 above depicts the array of historical
service check results for a particular service. The oldest result is on the left and the newest result is on the
right. We see that in the example below there were a total of 7 state changes,(dt, tg, t12, t16, and

t19). Without any weighting of the state changes over time, this would give us a total state change of 35%

(7 state changes out of a possible 20 state changes). When the individual state changes are weighted
relative to the time at which they occurred, the resulting total percent state change for the service is less
than 35%. This makes sense since most of the state changes occurred earlier rather than later. Let’s just
say that the weighted percent of state change turned ouBt®the

So what significance does the 31% state change have? Well, if the service was prewidlagiping and

31% isequal to or greatethanthe value specified by tlfegh_service flap threshotmption, NetSaint
considers the service to have just started flapping. If the sevaspreviously flapping and 31% less

than or equato the value specified by tifiew_service flap threshgkhlue, NetSaint considers the

service to have just stopped flapping. If either of those two conditions are not met, NetSaint does nothing
else with the service, since it is either not currently flapping or it idlapibing...

http://www.netsaint.org/docs/0_0_7/images/statetransitions2.gif

Host Flap Detection

Host flap detection works in a similiar manner to service flap detection, with one important difference:
NetSaint will attempt to check to see if a host is flapping whenever the status of the host is @hécked
whenever a service associated with that host is checked. Why is this done? Well, with services we know
that the minimum amount of time between consecutive flap detection routines is going to be equal to the
service check interval. With hosts, we don’'t have a check interval, since hosts are not monitored on a
regular basis - they are only checked as necessary. A host will be checked for flapping if its state has
changed since the last time the flap detection was performed for that ifdst state has not changed but

at leastx amount of time has passed since the flap detection was performedamoeint of time is equal

to the average check interval of all services associated with the host. That's the best method | could come
up with for determining how often flap detection could be performedrmst..

Just as with services, NetSaint stores the results of the last 21 of these host checks in an array for the flap
detection logic. State changes are weighted based on the time at which they occurred, and the total percent
change in state is calculated in the same manner that it is in the service flagjng

If a host was previouslgot flapping and its total computed state change percentaggiéd to or greater
thanthe value specified by tifegh _host flap threshqgldption, NetSaint considers the host to have just
started flapping. If the hostaspreviously flapping and its total computed state change percenlags is

than or equato the value specified by tiiew host flap thresholdalue, NetSaint considers the host to
have just stopped flapping. If either of those two conditions are not met, NetSaint does nothing else with
the host, since it is either not currently flapping or it is B&pping...

Flap Handling

When a service or host is first detected as flapping, NetSaint will dottings:

1. Log a message indicating that the service or host is flapping
2. Add a non-persistent comment to the host or service indicating that it is flapping
3. Supress notifications for the service or host (this is one of the filters|notifieationlogid)

When a service or host stops flapping, NetSaint will ddahewing:

1. Log a message indicating that the service or host has stopped flapping

2. Delete the comment that was originally added to the service or host when it started flapping

3. Remove the block on notifications for the service or host (notifications will still be bound to the
normalnotificationlogig)

Installing NetSaint

Unpacking The Distribution

To unpack the NetSaint distribution, type the following two commands at gshielpt:

gunzip netsaint-0.0.7.tar.gz
tar xf netsaint-0.0.7.tar

If you downloaded the ZIP version of the distribution, typefttiewing:
unzip netsaint-0.0.7.zip

When you have finished executing these commands, you shouldrfetdaant-0.0.7directory that has
been created in your current directory. Inside that directory you will find all the files that compromise the
core NetSaindistribution.

Compiling The Binaries

Create the base directory where you would like to install NetSafollaws...
mkdir /usr/local/netsaint
Run the configure script to initialize variables and create a Makefftdlaws...

.Jconfigure --prefix=prefix --with-cgiurl= cgiurl --with-htmurl= htmurl --with-netsaint-user=someuser
--with-netsaint-grp=somegroup [--enable-embedded-perl --with-pericaché

® Replaceprefix with the actual directory that you created in the step above (default is
/usr/local/netsaint

e Replacecgiurl with the actual url you will be using to accesS@@l4 (default is/cgi-bin/netsaink
Do NOT append a slash at the end of the url.

® Replacentmurlwith the actual url you will be using to access the HTML for the main interface and
documentation (default imetsaint)

® Replacesomeusewith the name of a user on your system that will be used for setting permissions on
the installed files (default isetsain}

® Replacesomegroupvith the name of a group on your system that will be used for setting permissions
on the installed files (default retsainj

® The--enable-embedded-pesption causes a PERL interpreter to be embedded into the Netsaint
binary rather than being loaded every time a PERL script is executed. (PERL V5.004 or later
preferred.)

® The--with-pericacheoption causes the compiled version of all PERL scripts processed by the above
embedded interpreter to be cachedréurse.

IMPORTANT: The--prefixargument of the configure script is very important, as it determines what
directory everything gets installed under. If you do not supply this option, the configure script will use
/usr/local/netsaints the target directory. Make sure that this directory already exists on your system

before attempting to instadiverything.
Compile NetSaint and the CGls with the followicgmmand:
make all

Installing The Binaries And HTML Files

Install the binaries and HTML files (documentation and main web page) with the folloaimgand:
make install

Creating And Installing Sample Configuration Files

Sampldmair} [hos} [resourckandCGl configuration files are automatically created in the root of the
distribution directory when you run the configwaipt.

You can install the sample configuration files with the followdegnmand:
make install-config

Installing An Init_Script

If you wish, you can also install the sample init scripfeto/rc.d/init.d/netsaintvith the following
command:

make install-init

Note: Previous versions of NetSaint includethaakeinstall-daemoninit command that was used to
install an init script that launched NetSaint in daemon mode instead of a foreground process. Beginning
with version 0.0.7, NetSaint now only includes the daemon init script, so both commaeadsiaaéent.

Directory Structure And File Locations

Change to the root of your NetSaint installation directory with the folloesomgmand...
cd /usr/local/netsaint

You should see five different subdirectories. A brief description of what each directory contains is given in
the tablebelow.

Sub-Directory | Contents

bin/ NetSaint corgorogram

otc/ |Mairi,|hosj; IresourclegndCGII configuration files (netsaint.cfg, hosts.cfg, resource.dfg,
and nscgi.cfgespectively)

shin/ CGls

share/ HTML files (for web interface and onlimocumentation)

var/ Empty directory for thfog file]

Notes:

1. The default hosts.cfg file created by the configure script will expect tijaiugihgreside in a
libexec/subdirectory off of your NetSaint installation. While this directory is not created by the
install script distributed with NetSaint, it is created by the install script supplied with the plugins (see
below).

Installing The Plugins

In order for NetSaint to be of any use to you, you're going to have to download and instplsgimg

(they are usually installed in thibexec/directory of your NetSaint installation). Plugins are scripts or
binaries which perform all the service and host checks that constitute monitoring. You can grab the latest
release of the plugins from tldewnloadspag¢or directly from th§SourceForge projegagée

Where To Go FromHere

Okay, so you're done compiling and installing NetSaint. Now you can movegoomfiguringNetSainit
before starting it up. You'll also probably want to use the web interface, so you'll also have to read the
instructions ofpnstalling the webnterfac¢and configuring web authenticatiastc.

http://www.netsaint.org/download
http://sourceforge.net/projects/netsaintplug/

Installing The Weblnterface

Notes

In these instructions | will assume that you are runninfApieehéweb server on your machine. If you are
using some other web server, you’ll have to make changes abgrepriate.

Configuring Aliases For The HTML Files And CGils

In order to make the HTML files and CGls accessible via the web, you'll have to edit your Apache web
server configuration asllows...

Add a line in thenhttpd.conf file as follows (change to match the directory structure forigsiallation)...
Alias /netsaint//usr/local/netsaint/share/

This will allow you to use an URL likkttp://yourmachine/netsaint/ to view the HTML web interface
and documentation. The alias should be the same value that you entered-teithiHetmurl argument
to the configure script (default isetsaint].

You'll need to create an alias for the NetSaint CGls as well. The default installation expects to find them
within http://yourmachine/cgi-bin/netsaint/, although this can be changed using-thath-cgiurl option

in the configure script. Anyway, add something like the following to yid.conf file (changing it to

match any directory differences on ya@ystem)...

ScriptAlias /cgi-bin/netsaint/ /usr/local/netsaint/sbhin/

Important: The ScriptAlias entry for the NetSaint CGls must precede the star@taiptAlias /cgi-bin/
/some...where../directive already present in the configuration file. If it doesn’t, you will most likely be
unable to access tiI@GIs.

Once you've editing the Apache configuration file, you'll need to restart the web server with a command
like this...

letc/rc.d/init.d/httpd restart

Once you've gotten the web server restarted, there is just one minor thing you need to verify. Check the
[CGI configuratiorfile] (nscgi.cfg) in theetc/ subdirectory of your NetSaint installation and verify that the
main_config_file variable points to the correct location of [thair configuration file on your system. The
CGls will need to know this in order to find your current status log, historyetog,

Don't forget to check and see if the changes you made to Apache work. You should be able to point your
web browser atittp://yourmachine/netsaint and get the web interface for NetSaint. The CGls may not
display any information, but this will be remedied once you configure web server authentication for the
CGls and staretSaint.

http://www.apache.org/

Where To Go FromHere

Once you have configured the web interface properly, you'll need to enable web server authentication for
accessing the CGls and configure user authorization information. Details on doing this can peféund

Authentication And Authorization In The CGls

Notes

Throughout these instructions | will be assuming that you are runniffgpeh¢web server on your
machine. If you are running some other web server, you will have to makeadpmgments.

Definitions

Throughout these instructions | will be using the following terms, so you should understand what they
mean...

e An authenticatediseris an someone who has authenticated to the web server with a username and
password and has been granted access to the CGls by the web server

e An authenticateadtontactis an authenticated user whose username matches the short name of a
|contactdefinition in thelhost configuratiorile]

Index

[Configuring web servemuthentication

[Setting up authenticateser$

[Enabling authentication/authorization functionality in @@Ig
[Default permissions to CGiiformation

|Granting additional permissions to Ci@éformation
[Authentication on secure wealrverp

Configuring Web Server Authentication

The first step to configuring your web server for authentication is to make surectss.confile

contains anAuthOverride AuthConfig’ statement in it for the NetSaint CGI-BIN directory. If it doesn't,
you'll have to add something similiar to the following to yaacess.confile. Note that you will have to
restart the web server in order for this change toa#ket.

<Directory /usr/local/netsaint/sbin>
AllowOverride AuthConfig

order allow,deny

allow from all

Options ExecCGl

</Directory>

If you also want to require authentication for access the HTML pages for NetSaint, add something similiar
to the following in theaccess.confile aswell.

<Directory /usr/local/netsaint/share>
AllowOverride AuthConfig

order allow,deny

allow from all

</Directory>

http://www.apache.org/

The second step is to create a file nanaccesdn the root your CGI directory (and optionally also you
HTML directory) for NetSaint (usually /usr/local/netsaint/sbin and /usr/local/netsaint/share, respectively).
The file(s) should have contents similiar to tbkowing...

AuthName "NetSaint Access"

AuthType Basic

AuthUserFile /usr/local/netsaint/etc/htpasswd.users
require valid-user

Setting Up AuthenticatedUsers

Now that you've configured the web server to require authentication for access to the CGls, you'll need to
configure users who can acess the CGls. This is done by usingp#sswdcommand supplied with
Apache.

Running the following command will create a new file caliguasswd.userm the/usr/local/netsaint/etc
directory. It will also create an username/password entmydimaintadminYou will be asked to provide a
password that will be used whaatsaintadmirauthenticates to the wakerver.

htpasswd -c /usr/local/netsaint/etc/htpasswd.usergtsaintadmin

Continue adding more users until you've created an account for everyone you want to access the CGls.
Use the following command to add additional users, replacing <username> with the actual username you
want to add. Note that the option is not used, since you already created the ifilgal

htpasswd /usr/local/netsaint/etc/htpasswd.usersusername>

Okay, so you're done with the first part of what needs to be done. If you point your web browser to your
NetSaint CGls you should be asked for a username and password. If you have problems getting user
authentication to work at this point, read your webserver documentation foinfwre

Enabling Authentication/Authorization Functionality In The CGls

The next thing you need to do is make sure that the CGls are configured to use the authentication and
authorization functionality in determining what information and/or commands users have access to. This is
done be setting thigse authenticatipwmariable in thgCGI configuratiorfile|to a non-zero valué&xample:

use_authentication=1
Okay, you're now done with setting up basic authentication/authorization functionality@gtlse

Default Permissions To CGlinformation

So what default permissions do users have in the CGls by default when the authentication/authorization
functionality isenabled?

CGl Data AuthenticatedContactf] | Other Authenticatet!serg]
Host Statusnformation Yes No
Host Configuratioinformation | Yes No
HostHistory Yes No
HostNotifications Yes No
HostCommands Yes No
Service Statumformation Yes No
Service Configuratiotnformation| Yes No
ServiceHistory Yes No
ServiceNotifications Yes No
ServiceCommands Yes No
All ConfigurationInformation No No
System/Procedsiformation No No
System/ProcesSsommands No No

Authenticateaontactg] are granted the following permissions for esehvicefor which they are
contacts (but not for services for which they areaooitacts)...

Authenticateatontactg] are granted the following permissions for ehokt for which they are contacts

Authorization to view service status information
Authorization to view service configuration information

Authorization to view history and notifications for the service
Authorization to issue serviammmands

(but not for hosts for which they are maintacts)...

Authorization to view host status information

Authorization to view host configuration information
Authorization to view history and notifications for the host
Authorization to issue host commands
Authorization to view status information for all services on the host

Authorization to view configuration information for all services on the host
Authorization to view history and notification information for all services on the host
Authorization to issue commands for all services orhtist

It is important to note that by defauib oneis authorized for théllowing...

Viewing the raw log file via thghowlogCGlJ

Viewing NetSaint process information via ygended informatio€Gl|

Issuing NetSaint process commands vidoti@mandCGl]

Viewing host group, contact, contact group, time period, and command definitions via the

[configurationCGl|
°

You will undoubtably want to access this information, so you'll have to assign additional rights for
yourself (and possibly other users) as descrifzdolw...

Granting Additional Permissions To CGl Information

You can granauthenticateccontactsor otherauthenticatediserspermission to additional information in
the CGls by adding them to various authorization variables [B@leconfiguratiorfile] | realize that the
available options don't allow for getting really specific about particular permissions, but its better than
nothing..

Additional authorization can be given to users by adding them to the following variables in the CGI
configurationfile...

[authorized for system informatjon
lauthorized for system commahds
[authorized for configuration information
lauthorized for all hosts

lauthorized for all host commands
[authorized for all services

[authorized for all service commahds

CGl Authorization Requirements

If you are confused about the authorization needed to access various information in the CGls, read the
Authorization Requirements section for each CGl as descrilfesfé

Authentication On Secured WebServers

If your web server is located in a secure domain (i.e., behind a firewall) or if you are using SSL, you can
define a default username that can be used to access the CGls. This is done by defining the

[default_user _nameption in theCGI configuratiorfile} By defining a default username that can access

the CGils, you can allow users to access the CGls without necessarily having to authenticate to the web
server.. You may want to use this to avoid having to use basic web authentication, as basic authentication
transmits passwords in clear text overlifternet.

Important: Do notdefine a default username unless you are running a secure web server and are sure that
everyone who has access to the CGls has been authenticated in some manner! If you define this variable,
anyone who has not authenticated to the web server will inherit all rights you assigrugethis

Configuring NetSaint

Configuration Overview

Configuring NetSaint is done by editing three files - the "main" configuration file, the "host" configuration
file, and the CGI configuratiofile.

Main Configuration File

Documentation for the main configuration file can be fdnedk A sample main configuration file is
generated automatically when you run teafigure script before compiling the binaries. Look for it

either in the distribution directory or the etc/ subdirectory of your installation. Wheinstall the sample
config files using thenake install-config command, a sample main configuration file will be placed into
your settings directory (usually /usr/local/netsaint/etc). The default name of the main configuration file is
netsaint.cfg

Host Configuration File

Documentation for the host configuration file can be fdued A sample host configuration file is
generated automatically when you run teafigure script before compiling the binaries. Look for it

either in the distribution directory or the etc/ subdirectory of your installation. Whedinstall the sample
config files using thenake install-config command, a sample main configuration file will be placed into
your settings directory (usually /usr/local/netsaint/etc). The default name of the host configuration file is
hosts.cfg The "host" configuration file is where you define hosts, host groups, contacts, contact groups,
commands, time periods, asdrvices.

CGI Configuration File

Documentation for the CGI configuration file can be fofaedd A sample CGI configuration file is

generated automatically when you run teafigure script before compiling the binaries. When you

install the sample config files using theake install-config command, the CGI configuration file will be
placed in the same directory as the main and host config files (usually /usr/local/netsaint/etc). The default
name of the CGI configuration file mscgi.cfg

Where To Go FromHere

Once you configure NetSaint to your liking you will neefyeoify thedatayou entered before starting to
monitoranything.

Main Configuration File Options

Notes
When creating and/or editing configuration files, keep the followingimd:

1. Lines that start with a '#' character are taken to be comments and are not processed
2. Variables names must begin at the start of the line - no white space is allowed before the name
3. Variable names arease-sensitive

SampleConfiguration

A sample main configuration file can be created by runningniladke config' command. The default
name of the main configuration file igtsaint.cfg- look for it in the NetSaint distribution directory or in
the etc/ subdirectory of youmstallation.

Index

|Lo§ file]

|Qbiect (host) configuratiofile|
empfile
Aggregated status updatmstio
Aggregated status data updaterval
etSaintuse
etSaintgrouy
rogrammode
ervice check executiaptio
assive service check acceptaopgo
vent handlepptio
0g rotationmetho
og archivepat
xternal command chedptio
xternal command chedkterval
External commantélle
ommentile
Lock file
tate retentiooptio
tate retentiofile
utomatic state retention updatgerva
se retained program staiptio
slog loggingpptio
Notification loggingoptio
[Service check retry loggingptio
Host retry loggingptio

iI

=

i

.

[Event handler loggingptio
Initial state loggingpptio
Passive service check Io§§in§tioﬂ
Global host everfuandlek
Global service everfiandlief
Inter-check sleepm
Inter-check delaynethod
[Service interleavéactof
Maximum concurrent servigehecks
|Service reaﬁe‘reﬁuencil

ressive host check
Flaﬁ detectiomﬁtioﬂ
[Low service flaghreshol
[Cow host flapthreshold
[High host flaghresholy
Soft service de@endencieétioﬂ
[Service checkimeou}
Host checkimeout
Event handletimeou
[Notification timeou}
|Obsessive compulsive service processneout
Performance data Erocess'@ioﬂ
[Host Eerformance data Erocessomman]j
Service performance data processmmman
[Orphaned service chedptior]
[Administrator emaibddrests
[Administratorpage}

tio

Log File

Format: log_file=<file_name>

Example: log_file=/usr/local/netsaint/var/netsaint.log

This variable specifies where NetSaint should create its main log file. This should be the first variable that
you define in your configuration file, as NetSaint will try to write errors that it finds in the rest of your
configuration data to this file. This file is never deleted, pruned or rotated by NetSaint. | suggest adding a
cron job to do log rotations every month or so (more often if you have adtarofs).

Object (Host) Configuration File

Format: cfg_file=<file_name>

Example: cfg_file=/usr/local/netsaint/etc/hosts.cfg

This specifies thebject/host configuratiofile| that NetSaint should use for monitoring. This file has
traditionally been called the "host" config file, even though it may contain more than just host definitions.
Object configuration files contain definitions for hosts, host groups, contacts, contact groups, services,
commands, etc. You can split your configuration information into several files and specify multiple
cfg_file= statements to include eachtbém.

ResourceFile

Format: resource_file=<file_name>

Example: resource_file=/usr/local/netsaint/etc/resource.cfg

This is used to specify an optional resource file that can contain UR&m$definitions. SUSERN$

macros are useful for storing usernames, passwords, and items commonly used in command definitions
(like directory paths). The CGls witlot attempt to read resource files, so you can set restrictive
permissions (600 or 660) on them to protect sensitive information. You can include multiple resource files
by adding multiple resource_file statements to the main config file - NetSaint will process them all. See
the sample resource.cfq file in the base of the NetSaint directory for an example of how to define
$USERN$Macros.

Temp File

Format: temp_file=<file_name>

Example: temp_file=/usr/local/netsaint/var/netsaint.tmp

This is the temporary file into which NetSaint redirects the standard output and error from the execution of
plugins. The output from the plugins is scooped from the temp file and used for both display in the "status"
CGl output and use in notification macros. This file is deleted after the plugin has been executed. This file
is also used as a scratch file when NetSaint updates thelstatus

Note: On most systems, the temp file will have to reside on the same filesystenstudde} theflog |
and thdlog file archivepati

Status File (StatusLog)

Format: status_file=<file_name>

Example: status_file=/usr/local/netsaint/var/status.log

This is the file that NetSaint uses to store the current status of all monitored services. The status of all
hosts associated with the service you monitor are also recorded here. This file is used by the "status" CGI
so that current monitoring status can be reported via a web interface. The CGIls must have read access to
this file in order to function properly. This file is deleted every time NetSaint stops and recreated when it
starts.

Aggregated Status Update®©ption

Format: aggregate_status_updates=<0/1>

Example: aggregate_status_updates=1

This option determines whether or not NetSaint will aggregate updates of host, service, and program status
data. Normally, status data is updated immediately when a change occurs. This can result in high CPU
loads if you are monitoring a lot of services. If you want NetSaint to only update status datt@tuthe

every few seconds (as determined bysla¢us update interyaption), enable this option. If you

want immediate updates, disable it. Values arfelisvs:

® (= Disable aggregated updates (default)
e 1 = Enabled aggregategpdates

Aggregated Status Updatdnterval

Format: status_update_interval=<seconds>

Example: status_update_interval=15

This setting determines how often (in seconds) that NetSaint will update status daj e
minimum update interval is five seconds. If you have disabled aggregated status updates (Wlth the
[aggregate status updatestion), this option has reffect.

NetSaint User

Format: netsaint_user=<username/UID>

Example: netsaint_user=netsaint

This is used to set the effective user that the NetSaint process should run as. After initial program startup
and before starting to monitor anything, NetSaint will drop its effective privileges and run as this user.
You may specify either a username &J1®.

NetSaint Group

Format: netsaint_group=<groupname/GID>

Example: netsaint_group=netsaint

This is used to set the effective group that the NetSaint process should run as. After initial program startup
and before starting to monitor anything, NetSaint will drop its effective privileges and run as this group.
You may specify either a groupname dBiD.

Program Mode

Format: program_mode=<a/s>

Example: program_mode=a

This is the intial program mode that NetSaint should use when it starts or restarts. More information on
program modes can be foyhdrg Note: If you havfstateretentiohenabled, NetSaint will ignore this

setting when it (re)starts and use the last known setting for this option (as storgstatetmetentiofile)),
unlessyou disable thigise_retained_program_statetion. If you want to change this option when state
retention is active (and these_retained program_staesnabled), you'll have to use the appropriate
[externalcommantor change it via the web interface. Values arbews:

® a = Active mode (default)
® s = Standbynode

Service Check ExecutiorOption

Format: execute_service_checks=<0/1>

Example: execute_service_checks=1

This option determines whether or not NetSaint will execute service checks when it initially (re)starts. If
this option is disabled, NetSaint will not actively execute any service checks and will remain in a sort of
"sleep” mode (it can still accdpassivecheckbunless you'vidisabledhen). This option is most often

used when configuring backup monitoring servers, as described in the documentaddunoiandyor

when setting up [distributedimonitoring environment. Note: If you hastateretentiohenabled, NetSaint

will ignore this setting when it (re)starts and use the last known setting for this option (as stored in the
[state retentiofile]), unlessyou disable thigise retained program _sfatation. If you want to change this
option when state retention is active (andube_retained_program_s{éteenabled), you'll have to use

the appropriatexternalcommangbr change it via the web interface. Values arobews:

® (0 =Don’t execute service checks
e 1 = Execute service checidefault)

Passive Service Check Acceptane@ption

Format: accept_passive_service_checks=<0/1>

Example: accept _passive_service_checks=1

This option determines whether or not NetSaint will agpegsive serviceheckwhen it initially

(re)starts. If this option is disabled, NetSaint will not accept any passive service checks. Note: If you have
[stateretentiohenabled, NetSaint will ignore this setting when it (re)starts and use the last known setting
for this option (as stored in t{sgate retentioffle)), unlessyou disable thgse retained program_sfate

option. If you want to change this option when state retention is active (and the

[use_retained program_sfaesnabled), you'll have to use the appropigternalcommangbr change it

via the web interface. Values arefakows:

® (0 =Don't accept passive service checks
® 1 = Accept passive service cheg¢llsfault)

Event Handler Option

Format: enable_event_handlers=<0/1>

Example: enable_event handlers=1

This option determines whether or not NetSaint willguenthandlerpvhen it initially (re)starts. If this

option is disabled, NetSaint will not run any host or service event handlers. Note: If yqaidigve
[retentiohenabled, NetSaint will ignore this setting when it (re)starts and use the last known setting for this
option (as stored in tigate retentiofile)), unlessyou disable thjgise retained program_statation. If

you want to change this option when state retention is active (apdeheetained _program_sfade

enabled), you'll have to use the appropretéernalcommangbr change it via the web interface. Values

are adollows:

® (0 = Disable event handlers
e 1 = Enable event handlgefault)

Log Rotation Method

Format: log_rotation_method=<n/h/d/w/m>

Example: log_rotation_method=d

This is the rotation method that you would like NetSaint to use for your log file. Valuesfallewas:

n = None (don't rotate the log - this is the default)

h = Hourly (rotate the log at the top of each hour)

d = Dalily (rotate the log at midnight each day)

w = Weekly (rotate the log at midnight on Saturday)

m = Monthly (rotate the log at midnight on the last day ofntioaith)

Log Archive Path

Format: log_archive_path=<path>

Example: log_archive_path=/usr/local/netsaint/var/archives/

This is the directory where NetSaint should place log files that have been rotated. This option is ignored if
you choose to not use the log rotatfanctionality.

External Command CheckOption

Format: check_external_commands=<0/1>

Example: check_external_commands=1

This option determines whether or not NetSaint will chec for internal commands it
should execute. This option must be enabled if you plan on usiggimandCGlto issue commands
via the web interface. Third party programs can also issue commands to NetSaint by writing to the

command file, provided proper rights to the file have been granted as outlihedHAQ More
information on external commands can be fdhec

e 0 = Don’t check external commands (default)
® 1 = Check externalommands

External Command CheckInterval

Format: command_check_interval=<xxx>

Example: command_check_interval=1

This is the number of "time units" to wait between external command checks. Unless you've changed the

interval_lengtfvalue (as defined below) from the default value of 60, this number will mean minutes.
Each time NetSaint checks for external commands it will read and process all commands present in the

before continuing on with its other duties. More information on external commands can be
foundheré

External Command File

Format: command_file=<file_name>

Example: command_file=/usr/local/netsaint/var/rw/netsaint.cmd

This is the file that NetSaint will check for external commands to procesfgonmaandCGl writes

commands to this file. Other third party programs can write to this file if proper file permissions have been
granted as outline The external command file is implemented as a named pipe (FIFO), which is
created when NetSaint starts and removed when it shuts down. More information on external commands

can be founfheré

CommentFile

Format: comment_file=<file_name>

Example: comment_file=/usr/local/netsaint/var/comment.log

This is the file that NetSaint will use for storing service and host comments. Comments can be viewed and
added for both hosts and services througlegtended informatio€GI|

Lock File

Format: lock_file=<file_name>

Example: lock_file=/tmp/netsaint.lock

This option specifies the location of the lock file that NetSaint should create when it runs as a daemon
(when started with the -d command line argument). This file contains the process id (PID) number of the
running NetSainprocess.

State RetentionOption

Format: retain_state_information=<0/1>

Example: retain_state information=1

This option determines whether or not NetSaint will retain state information for hosts and services
between program restarts. If you enable this option, you should supply a valugstatéheetention_file
variable. When enabled, NetSaint will save all state information for hosts and service before it shuts down
(or restarts) and will read in previously saved state information when it staggmimp

® 0 = Don't retain state information (default)
® 1 = Retain statenformation

State RetentionFile

Format: state_retention_file=<file_name>

Example: state_retention_file=/usr/local/netsaint/var/status.sav

This is the file that NetSaint will use for storing service and host state information before it shuts down.
When NetSaint is restarted it will use the information stored in this file for setting the initial states of
services and hosts before it starts monitoring anything. This file is deleted after NetSaint reads in initial
state information when it (re)starts. In order to make NetSaint retain state information between program
restarts, you must enable fiegain_state informatigpoption.

Automatic State Retention Updatenterval

Format: retention_update_interval=<minutes>

Example: retention_update_interval=60

This setting determines how often (in minutes) that NetSaint will automatically save retention data during
normal operation. If you set this value to 0, NetSaint will not save retention data at regular intervals, but it
will still save retention data before shutting down or restarting. If you have disabled state retention (with
thelretain_state _informatigpaption), this option has reffect.

Use Retained Program Stat®©ption

Format: use_retained_program_state=<0/1>

Example: use_retained program_state=1

This setting determines whether or not NetSaint will set various program-wide state variables based on the
values saved in the retention file. Some of these program-wide state variables that are normally saved
across program restarts if state retention is enabled inclugedip@m_modgenable flap detectipn

[enable _event handlgesxecute service cheglkandaccept passive_service cheoksions. If you do

not havegstateretentiopenabled, this option has effect.

® (0 =Don't use retained program state
® 1 = Use retained program stétiefault)

Syslog LoggingOption

Format: use_syslog=<0/1>
Example: use_syslog=1

This variable determines whether messages are logged to the syslog facility on your local host. Values are
asfollows:

® (0 =Don't use syslog facility
® 1 = Use syslodacility

Notification Logging Option

Format: log_ notifications=<0/1>

Example: log_notifications=1

This variable determines whether or not notification messages are logged. If you have a lot of contacts or

regular service failures your log file will grow relatively quickly. Use this option to keep contact
notifications from beindgogged.

® (0 =Don't log notifications
® 1 = Lognotifications

Service Check Retry LoggingOption

Format: log_service_retries=<0/1>

Example: log_service_retries=1

This variable determines whether or not service check retries are logged. Service check retries occur when
a service check results in a non-OK state, but you have configured NetSaint to retry the service more than

once before responding to the error. Services in this situation are considered to be in "soft" states. Logging
service check retries is mostly useful when attempting to debug NetSaint or test oufesemibandlerk

® 0 =Don'’t log service check retries
® 1 = Log service chedletries

Host Check Retry LoggingOption

Format: log_host_retries=<0/1>

Example: log_host_retries=1

This variable determines whether or not host check retries are logged. Logging host check retries is mostly
useful when attempting to debug NetSaint or test oufdwasithandlerp

® (0 =Don'’t log host check retries
® 1 =Log host checketries

Event Handler Logging Option

Format: log_event_handlers=<0/1>

Example: log_event_handlers=1

This variable determines whether or not service anddwesithandlergare logged. Event handlers are
optional commands that can be run whenever a service or hosts changes state. Logging event handlers is
most useful when debugging NetSaint or first trying out your event hasutipts.

e 0 =Don'’t log event handlers
® 1 =Log evenhandlers

Initial States Logging Option

Format: log_initial_states=<0/1>

Example: log_initial_states=1
This variable determines whether or not NetSaint will force all initial host and service states to be logged,
even if they result in an OK state. Initial service and host states are normally only logged when there is a

problem on the first check. Enabling this option is useful if you are using an application that scans the log
file to determine long-term state statistics for serviceshasts.

e (0 = Don't log initial states (default)
® 1 = Log initialstates

External Command Logging Option

Format: log_external_commands=<0/1>

Example: log_external_commands=1

This variable determines whether or not NetSaint will[drternalcommandghat it receives from the
[external commantile} Note: This option does not control whether orjpesive serviceheck§(which

are a type of external command) get logged. To enable or disable logging of passive checks, use the
[[log_passive service chepsgtion.

e (0 =Don't log external commands
e 1 = | og external commanddefault)

Passive Service Check Loggin@ption

Format: log_passive_service_checks=<0/1>

Example: log_passive_service_checks=1

This variable determines whether or not NetSaint wil[dagsive serviceheckgthat it receives from the

[external commantile] If you are setting up[distributed monitoringnvironmerjor plan on handling a
large number of passive checks on a regular basis, you may wish to disable this option so your log file

doesn't get todarge.

® 0 =Don't log passive service checks
® 1 =Log passive service chedkiefault)

Global Host Event Handler Option

Format: global_host_event_handler=<command>

Example: global_host_event_handler=log-host-event-to-db

This option allows you to specify a host event handler command that is to be run for every host state
change. The global event handler is executed immediately prior to the event handler that you have
optionally specified in eadhostdefinitio] Thecommandargument is the short name

[definitioj that you define in your host configuration file. The maximum amount of time that this command
can run is controlled by ti@vent _handler_timeduption. More information on event handlers can be

foundheré

Global Service Event HandlerOption

Format: global_service_event_handler=<command>

Example: global_service event handler=log-service-event-to-db

This option allows you to specify a service event handler command that is to be run for every service state
change. The global event handler is executed immediately prior to the event handler that you have
optionally specified in eadgervicedefinitiol Thecommandargument is the short name

[definitior] that you define in your host configuration file. The maximum amount of time that this command
can run is controlled by thgvent_handler_timeduption. More information on event handlers can be

foundfperé

Inter-Check SleepTime

Format: sleep_time=<seconds>

Example: sleep_time=1

This is the number of seconds that NetSaint will sleep before checking to see if the next service check in
the scheduling queue should be executed. Note that NetSaint will only sleep after it "catches up" with
gueued service checks that have fablehind.

Inter-Check Delay Method

Format: inter_check_delay_method=<n/d/s/x.xx>

Example: inter_check_delay_method=s

This option allows you to control how service checks are initially "spread out" in the event queue. Using a
"smart" delay calculation (the default) will cause NetSaint to calculate an average check interval and
spread initial checks of all services out over that interval, thereby helping to eliminate CPU load spikes.
Using no delay is generallyot recommended unless you are testingsdmwice checlarallelizatiof
functionality. Using no delay will cause all service checks to be scheduled for execution at the same time.
This means that you will generally have large CPU spikes when the services are all executed in parallel.
More information on how to estimate how the inter-check delay affects service check scheduling can be
foundheréValues are afllows:

n = Don’t use any delay - schedule all service checks to run immediately (i.e. at the same time!)
d = Use a "dumb" delay of 1 second between service checks

s = Use a "smart" delay calculation to spread service checks out evenly (default)

X.Xx = Use a user-supplied inter-check delay of xse&zonds

Service InterleaveFactor

Format: service_interleave_factor=<s{>

Example: service_interleave_factor=s

This variable determines how service checks are interleaved. Interleaving allows for a more even
distribution of service checks, reduced loademotehosts, and faster overall detection of host problems.
With the introduction of service chelplarallelizatioh remote hosts could get bombarded with checks if
interleaving was not implemented. This could cause the service checks to fail or return incorrect results if
the remote host was overloaded with processing other service check requests. Setting this value to 1 is
equivalent to not interleaving the service checks (this is how versions of NetSaint previous to 0.0.5
worked). Set this value ®(smart) for automatic calculation of the interleave factor unless you have a
specific reason to change it. The best way to understand how interleaving works is to

(detailed view) when NetSaint is just starting. You should see that the service check results are spread out
as they begin to appear. More information on how interleaving works can bdhfednd

® x = A number greater than or equal to 1 that specifies the interleave factor to use. An interleave factor
of 1 is equivalent to not interleaving the service checks.
® s = Use a"smart" interleave factor calculatidefault)

Maximum Concurrent Service Checks

Format: max_concurrent_checks=<max_checks>

Example: max_concurrent_checks=20

This option allows you to specify the maximum number of service checks that can bfpacallglat any

given time. Specifying a value of 1 for this variable essentially prevents any service checks from being
parallelized. Specifying a value of O (the default) does not place any restrictions on the number of
concurrent checks. You'll have to modify this value based on the system resources you have available on
the machine that runs NetSaint, as it directly affects the maximum load that will be imposed on the system
(processor utilization, memory, etc.). More information on how to estimate how many concurrent checks
you should allow can be foufiére

Service ReaperFrequency

Format: service_reaper_frequency=<frequency_in_seconds>
Example: service_reaper_frequency=10
This option allows you to control the frequenysecond®f service "reaper” events. "Reaper"” events

process the results frgparallelized serviceheck$that have finished executing. These events consitute
the core of the monitoring logic MetSaint.

Timing Interval Length

Format: interval_length=<seconds>

Example: interval _length=60

This is the number of seconds per "unit interval" used for timing in the scheduling queue, re-notifications,
etc. "Units intervals" are used in the host configuration file to determine how often to run a service check,
how often of re-notify a contaatc.

Important: The default value for this is set to 60, which means that a "unit value" of 1 in the host
configuration file will mean 60 seconds (1 minute). | have not really tested other values for this variable,
so proceed at your own risk if you decide tcsdb

Agressive Host CheckingOption

Format: use_agressive_host_checking=<0/1>

Example: use_agressive_host_checking=0

Beginning with release 0.0.4, NetSaint tries to be a little smarter about how and when it checks the status
of hosts. In general, disabling this option will allow NetSaint to make some smarter decisions and check
hosts a bit faster. Enabling this option will increase the amount of time required to check hosts, but may
improve reliability a bit. If you want to know more about exactly what this option does, search the source
code in thenetsaint.cfile for the string'use_agressive _host_checkih@nd read some of the comments

I've added. Unless you have problems with NetSaint not recognizing that a host recovered, | would
suggeshot enabling thisption.

® (0 =Don't use agressive host checking (default)
e 1 = Use agressive hashecking

Flap DetectionOption

Format: enable_flap_detection=<0/1>

Example: enable_flap_detection=0

This option determines whether or not NetSaint will try and detect hosts and services that are "flapping".
Flapping occurs when a host or service changes between states too frequently, resulting in a barrage of
notifications being sent out. When NetSaint detects that a host or service is flapping, it will temporarily
supress notifications for that host/service until it stops flapping. Flap detection is very experimental at this
point, so use this feature with caution! More information on how flap detection and handling works can be
foundheré Note: If you hav{stateretentiohenabled, NetSaint will ignore this setting when it (re)starts

and use the last known setting for this option (as stored ptdke retentiofile]), unlessyou disable the

[use retained program_staigtion. If you want to change this option when state retention is active (and
theluse retained_program_stageenabled), you'll have to use the appropfedernalcommantor

change it via the weinterface.

e 0 = Don’t enable flap detection (default)
e 1 = Enable flapletection

Low Service FlapThreshold

Format: low_service_flap_threshold=<percent>

Example: low_service_flap_threshold=25.0

This option is used to set the low threshold for detection of service flapping. For more information on how
flap detection and handling works (and how this option affects thingsjhigad

High Service FlapThreshold

Format: high_service_flap_threshold=<percent>

Example: high_service_flap_threshold=50.0

This option is used to set the low threshold for detection of service flapping. For more information on how
flap detection and handling works (and how this option affects thingsjhigad

Low Host Flap Threshold

Format: low_host_flap_threshold=<percent>

Example: low_host flap_threshold=25.0

This option is used to set the low threshold for detection of host flapping. For more information on how
flap detection and handling works (and how this option affects thingsjhigad

High Host Flap Threshold

Format: high_host_flap_threshold=<percent>

Example: high_host flap threshold=50.0

This option is used to set the low threshold for detection of host flapping. For more information on how
flap detection and handling works (and how this option affects thingsjhigad

Soft Service Dependencie®ption

Format: soft_state dependencies=<0/1>

Example: soft_state_dependencies=0

This option determines whether or not NetSaint will use soft service state information when checking
[servicedependenci¢Normally NetSaint will only use the latest hard service state when checking
dependencies. If you want it to use the latest state (regardless of whether its a sofstatédtgpd),

enable thioption.

® 0 = Don’t use soft service state dependencies (default)
e 1 = Use soft service statiependencies

Service CheckTimeout

Format: service_check_timeout=<seconds>

Example: service_check_timeout=60

This is the maximum number of seconds that NetSaint will allow service checks to run. If checks exceed
this limit, they are killed and a CRITICAL state is returned. A timeout error will alsodoed.

Host CheckTimeout

Format: host_check_timeout=<seconds>

Example: host_check_timeout=60

This is the maximum number of seconds that NetSaint will allow host checks to run. If checks exceed this
limit, they are killed and a CRITICAL state is returned and the host will be assumed to be DOWN. A
timeout error will also bégged.

Event Handler Timeout

Format: event_handler_timeout=<seconds>

Example: event_handler_timeout=60

This is the maximum number of seconds that NetSaint will gesnthandler
handler exceeds this time limit it will be killed and a warning willdzged.

0 be run. If an event

Notification Timeout

Format: notification_timeout=<seconds>

Example: notification_timeout=60

This is the maximum number of seconds that NetSaint will allow notification commands to be run. If a
notification command exceeds this time limit it will be killed and a warning wilbgged.

Obsessive Compulsive Service Processbimeout

Format: ocsp_timeout=<seconds>

Example: ocsp_timeout=5

This is the maximum number of seconds that NetSaint will alldabaessive compulsive senfice
[processocommangto be run. If a command exceeds this time limit it will be killed and a warning will be
logged.

Performance Data Processor Commandimeout

Format: perfdata_timeout=<seconds>

Example: perfdata_timeout=5

This is the maximum number of seconds that NetSaint will allfbasé performance data processor
[commangriservice performance data processammmangto be run. If a command exceeds this time limit
it will be killed and a warning will béogged.

Obsess Over Service®ption

Format: obsess_over_services=<0/1>

Example: obsess_over services=1

This value determines whether or not NetSaint will "obsess" over service checks results and run the
[obsessive compulsive service processmnmanglyou define. | know - funny name, but it was all | could
think of. This option is useful for performigistributedmonitoring If you're not doing distributed
monitoring, don’t enable thisption.

® (0 =Don't obsess over services (default)
® 1 = Obsess oveservices

Obsessive Compulsive Service Process6ommand

Format: ocsp_command=<command>

Example: ocsp_command=obsessive_service handler

This option allows you to specify a command to be run afteryservice check, which can be useful in
[distributedmonitoring This command is executed after @wenthandlefor|notificatiocommands. The
commandargument is the short name g¢@nmandiefinition that you define in your host configuration
file. The maximum amount of time that this command can run is controlled jpgspetimeoyibption.
More information on distributed monitoring can be fo[medé

Performance Data Processin@ption

Format: process_performance_data=<0/1>

Example: process_performance_data=1

This value determines whether or not NetSaint will process host and servicpeHeckancealatgby
running either thipost perfdata_commajma|service perfdata_commdiahichever is appropriate) after
every host and/or servioleck.

® (0 =Don't process performance data (default)
® 1 = Process performandata

Host Performance Data ProcessoEommand

Format: host_perfdata_command=<command>

Example: host_perfdata_command=handle-host-perfdata

This option allows you to specify a command that is to be runefegyhost check for the purpose of

logging or handling hofgerformancelatad Thecommandargument is the short name

[definitior] that you define in your host configuration file. The maximum amount of time that this command
can run is controlled by thgerfdata timeotboption. More information on performance data can be found
herg

Service Performance Data Processd@Command

Format: service_perfdata_command=<command>

Example: service_perfdata_command=handle-service-perfdata

This option allows you to specify a command that is to be runefegyservice check for the purpose of
logging or handling hofgerformancelatd Thecommandargument is the short name

[definitior] that you define in your host configuration file. The maximum amount of time that this command
can run is controlled by tigerfdata timeotoption. More information on performance data can be found
herg

Orphaned Service CheckOption

Format: check_for_orphaned_services=<0/1>

Example: check_for_orphaned_services=0

This option allows you to enable or disable checks for orphaned service checks. Orphaned service checks
are checks which ahve been executed and have been removed from the event queue, but have not had any
results reported in a long time. Since no results have come back in for the service, it is not rescheduled in
the event queue. This can cause service checks to stop being executed. Normally it is very rare for this to
happen - it might happen if an external user or process killed off the process that was being used to
execute a service check. If this option is enabled and NetSaint finds that results for a particular service
check have not come back, it will log an error message and reschedule the service check. If you start
seeing service checks that never seem to get rescheduled, enable this option and see if you notice any log
messages about orpharssivices.

® 0 = Don’t check for orphaned service checks (default)
® 1 = Check for orphaned servichecks

Administrator Email Address

Format: admin_email=<email_address>

Example: admin_email=root

This is the email address for the administrator of the local machine (i.e. the one that NetSaint is running
on). This value can be used in notification commands by usirRADMINEMAILS

Administrator Pager

Format: admin_pager=<pager_number_or_pager_email_gateway>
Example: admin_pager=pageroot@pagenet.com
This is the pager number (or pager email gateway) for the administrator of the local machine (i.e. the one

that NetSaint is running on). The pager number/address can be used in notification commands by using the
$ADMINPAGER$

External Command FilePermissions

Introduction

One of the most common problems people have seems to be with setting proper permissions for the
external command file. You need to set the proper permission dumstflecal/netsaint/var/rwdirectory

(or whatever the path portion of thbemmand _filedirective in youmain configuratiorfile|is set to). I'll
show you how to do this. Note: You mustroet in order to do some of thesteps...

Users andGroups

First, find the user that your web server process is running as. On many systems this isigodger
although it will vary depending on what OS/distribution you are running. You'll also need to know what
user Netsaint is effectively running as - this is specified witfnétsaint_usgvariable in the main config

file.

Next, create a new group calletscmd. On RedHat Linux you can use the following command to add a
new group (other systems mdijfer):

{usr/sbin/groupaddscmd

Next, add the web server uganbody and the NetSaint usémetsainj to the newly created group with
the followingcommands:

Jusr/sbin/usermod -G nscnmétsaint
/usr/sbin/usermod -G nschmdbbody

Creating the directory

Next, create the directory where the command file should be stored. By default, this is

lusr/local/netsaint/var/ryalthough it can be changed by modifying the path specifidtioommand _filg
directory.

mkdir /usr/local/netsaint/var/rw

Setting directory permissions

Next, change the ownership of the directory that will be used to hold the corfilmand
chown netsaint.nscmfdstr/local/netsaint/var/rw

Make sure the NetSaint user has full permissions odithetory...

chmod u+rwxusr/local/netsaint/var/rw

Make sure the group we created has read and write permissionsdinrethery.

chmod g+rw/usr/local/netsaint/var/rw

In order to force newly created files in the directory to inherit the group permissions from the directory,
we need to enable the group sticky bit ondhectory...

chmod g+dusr/local/netsaint/var/rw

Verifying the permissions

Check the permissions on the rw/ subdirectory by runtingl /usr/local/netsaint/var. You should see
something similiar to théollowing:

drwxrws--- 2 netsaint nscmd 1024 Aug 11 16:30 rw

Note that the usaretsaintis the owner of the directory and the graigemdis the group owner of the
directory. Thenetsaintuser haswx permissions and grougscmdhasrw permissions on the directory.
Also, note that the group sticky bit is enabled. That's whatveus...

Notes...

If you supplied the-with-command-grp=somegroup option when running the configure script, you can
create the directory to hold the command file and set the proper permissions automatically by running
"make install-commandmodeé.

Host Configuration File Options

Notes
When creating and/or editing configuration files, keep the followingimd:

1. Lines that start with a '#' character are taken to be comments and are not processed
2. Variables names must begin at the start of the line - no white space is allowed before the name
3. Variable names arease-sensitive

SampleConfiguration

A sample host configuration file can be created by runningntlaée config’ command. The default name
of the main configuration file isosts.cfg- look for it in the NetSaint distribution directory or in the etc/
subdirectory of youinstallation.

Relationship of Data

In order to better help you understand how hosts, host groups, contacts, contact groups, services, etc. relate
to each other I've throw together some diagrams. You can find them oveftireting ofoperation
documentation.

Index

|[Hostdefinitions

|[Host groupdefinitions
|Contactdefinitiong

|Contact groumlefinition$
[Commanddefinition$
[Servicedefinitiong

[Time perioddefinitions
[Service escalatiodefinitions
|[Hostgroup escalatiogefinitiong
[Service dependendefinitions

Host Definition

Format: host[<host_name>]=<host_alias>;<address>;<parent_hosts>;<host_check_command>;<max_attempts>;<notification_interval>;<notification_period>;<notify_recovery>;<notify_down>;<notify_unreachable>;<event_handler>

Example: host[novell1]=Novell Server#1;192.168.0.1;;check-host-alive;3;120;24x7;1;1;1;

A host definition is used to define a physical server, workstation, device, etc. that resides on your network.
The different arguments to a host definition are descileéalv.

<host_name>

This is a short name used to identify the host. It is used in host group §

services (which are monitored) associated with them. When used prop
the SHOSTNAME$macrdwill contain this shorhame.

nd

service definitions to reference this particular host. Hosts can have multiple

erly,

ded
d

<host_alias> This is a longer name or description used to identify the host. It is prov
in order to allow you to more easily identify a particular host. When usg
properly, the $SHOSTALIASnacrdwill contain thisalias/description.

<address> This is the IP address of the host. You can use a FQDN to identify the

properly, the $HOSTADDRES$@acrdwill contain thisaddress.

host,

but if DNS services are not availble this could cause problems. When lised

<parent_hosts>

This is a comma-delimited list of short names of the "parent” hosts for
particular host. Parent hosts are typically routers, switches, firewalls, e
that lie between the monitoring host and a remote hosts. A router, swit
etc. which is closest to the remote host is considered to be that host’s
"parent”. Read the "Determining Status and Reachability of Network H
document in thigheory ofoperationsection for more information. If this

host is on the same network segment as the host doing the monitoring
(without any intermediate routers, etc.) the host is considered to be on
local network and will not have a parent host. Leave this value blank if
host does not have a parent host (i.e. it is on the same segment as the
NetSaint host). The order in which you specify parent hosts has no effg
how things are monitored. However, gtatusma@ndstatuswilCGls will
use the first parent host that you specify as the primary parent for purp|
of drawingonly.

his
[C.
Ch,
DSts"
the
the

eCt on

0SEeS

<host_check _command>

> This is theshortnameof thefcommantthat should be used to check if the
host is up or down. Typically, this command would try and ping the hos
see if it is "alive". The command must return a stat{@K}{0) or NetSaint
will assume the host is down. If you leave this argument blank, the hos
not be checked - NetSaint will always assume the host is up. This is ug
you are monitoring printers or other devices that are frequently turned
The maximum amount of time that the notification command can run is
controlled by th¢host _check timeojpdption.

t to

t will
eful if
Dff.

<max_attempts>

if it returns any state other than[@k] state. Setting this value to 1 will

Note: If you do not want to check the status of the host, you must still
this to a minimum value of 1. To bypass the host check, just leave the
<host_check_command>ptionblank.

This is the number of times that NetSaint will retry the host check comimand

cause NetSaint to generate an alert without retrying the host check agdin.

et

<notification_interval>

This is the number of "time units" to wait before re-notifying a contact t
this server istill down or unreachable. Unless you've changed the
interval_length value in thémain configuratiorfile| from the default value

of 60, this number will mean minutes. If you set this value to 0, NetSaint

will notre-notify contacts about problems for this host - only one probld
notification will be senbut.

hat

m

<notification_period>

This is the short name of tfiene periodduring which notifications of
events for this host can be sent out to contacts. If a host goes down, b
unreachable, or recoveries during a time which is not covered by the ti

ecomes
ne

period, no notifications will be sent out. Read the "Time Periods" document

in theltheory ofoperationsection for morénformation.

<notify_recovery>

This value determines whether or not notifications should be sent to ar
contacts if the host is iIfRECOVERY state. Set this value fioif
notifications should be sent out about recovery statiéshey shouldn’t
Note: If dcontadtis configured to not receive notifications of host
recoveries, they will not be notified, regardless of seiting.

y

<notify_down>

This value determines whether or not notifications should be sent to ar
contacts if the host is iNROWN state. Set this value fioif notifications
should be sent out when the host goes d@aithey shouldn’t Note: If a
[contadtis configured to not receive notifications about hosts that go do
they will not be notified, regardless of thsistting.

y

<notify_unreachable>

This value determines whether or not notifications should be sent to ar
contacts if the host is in RBNREACHABLH state. Set this value foif
notifications should be sent out when the host becomes unreadhiible,
theyshouldn’t Note: If contadtis configured to not receive notifications
about unreachable hosts, they will not be notified, regardless ckttisg.

y

<event_handler>

This is theshortnameof thecommantthat should be run whenever a
change in the state of the host is detected (i.e. whenever it goes down
recovers). Read the documentatiorfesenthandlerifor a more detailed
explanation of how to write scripts for handling events. If you do not wi
define an event handler for the host, leave this option blank (as shown
example above). The maximum amount of time that the event handler
command can run is controlled by nent _handler timedwaiption.

or

5h to
in the

Host Group Definition

Format: hostgroup[<group_name>]=<group_alias>;<contact_groups>;<hosts>

Example: hostgroup[nt-servers]=All NT Servers;nt-admins;ntl,nt2,nt3

A host group definition is used to group one or more hosts together for the purposes of simplifying
notifications. Each host that you define must be a member of at least one host group - even if it is the only
host in that group. Hosts can be in more than one host group. When a host goes down, becomes
unreachable, or recovers, NetSaint will find which host group(s) the host is a member ofcgetabk

[grougfor each of those hostgroups, and notifycalhtactkassociated with those contact groups. This may
sound complex, but for most people it doesn’t have to be. It does, however, allow for flexibility in
determining who gets paged for what kind of problems. The different arguments to a host group definition
are outlinedbelow.

<group_name> | This is a short name used to identify the fypeup.

<group_alias> This is a longer name or description used to identify the host group. It is provided
in order to allow you to more easily identify a particular lgwstp.

<contact_groups>| This is a list of theshortnamesof thefcontactgroupéthat should be notified
whenever there are problems (or recoveries) with any of the hosts in this hos
group. Multiple contact groups should be separatecbbymas.

<hosts> This is a list of theshortnamesofhost$that should be included in this group.
Multiple host names should be separateddiymas.

Contact Definition

contactf<contact_name>}=<contact_alias>;<svc_notification_period>;<host_notification_period>;<svc_notify_recovery>;<svc_notify_critical>;<svc_notify_warning>;lt:host_notify_recovery>;<host_notify_down>;<host_notify_unreachable>;<service_notify_commands>;<host_notify_commands>;<email_address>/<pager>

Example:

A contact definition is used to identify someone who should be contacted in the event of a problem on
your network. The different arguments to a contact definition are destxdmd.

<contact_name> This is the short name used to identify the contact. It is referenced |n

[contactgrougdefinitions. Under the right circumstances, the
$CONTACTNAMES$macrgwill contain thisvalue.

<contact_alias> This is a longer name or description for the contact. Under the righ{s
circumstances, the $CONTACTALIA$@acrdwill contain thisvalue.

<svc_notification_period> | This is the short name of tfiene periodduring which the contact can
be notified about service problems or recoveries. You can think of this
as an "on call" time for service notifications for the contact. Read the
"Time Periods" document in tlibeory ofoperatiofisection of the
documentation for more information on how this works and potential
problems that may result from impropese.

<host_notification_period>

This is the short name of thiene periodduring which the contact can
be notified about host problems or recoveries. You can think of thig
an "on call" time for host natifications for the contact. Read the "Tin
Periods" document in thtbeory ofoperationsection of the

documentation for more information on how this works and potential

problems that may result from impropese.

as
e

<svc_notify_recovery>

This value determines whether or not the contact will be notified of
service recoveries. Set this valueltih the contact should be notified,
if they shouldn't. Note: If fervicgis configured to not send out
notifications upon recovery, contacts will not be notified about
recoveries for that service, regardless of $kising.

<svc_notify_critical>

This value determines whether or not the contact will be notified if &

service is in {ritical state. Set this value fioif the contact should be
notified of critical stateq) if they shouldn’t. Note: If gerviceis
configured to not send out notifications for critical states, contacts {
not be notified about critical states for that service, regardless of th
setting.

vill
S

<svc_notify_warning>

This value determines whether or not the contact will be notified if &

service is in eitheraarningor anunknowinstate. Set this value foif
the contact should be notified of warning/unknown st&téshey
shouldn’t. Note: If §servicéis configured to not send out notificationg
for warning/unknown states, contacts will not be notified about
warning/unknown states for that service, regardless oétisg.

<host_notify_recovery>

This value determines whether or not the contact will be notified if any

hostrecoverk Set this value ta if the contact should be notified of
hosts that recove@, if they shouldn't. Note: If faos}is configured to
not send out notifications for recoveries, contacts will not be notifie
when the host recovers, regardless ofgkising.

<host_notify _down>

This value determines whether or not the contact will be notified if any

host goeflown} Set this value ta if the contact should be notified of
hosts that go dow, if they shouldn’t. Note: If fos}is configured to
not send out notifications for down states, contacts will not be notifi
when the host goes down, regardless ofdbiting.

ed

<host_notify_unreachable>

This value determines whether or not the contact will be notified if any

host becomedsnreachableSet this value ta if the contact should be
notified of hosts that become unreacha®l# they shouldn’t. Note: If &
[hos}is configured to not send out notifications for unreachable state
contacts will not be notified when the host becomes unreachable,
regardless of thisetting.

S,

<service_notify_commands>

This is a list of theshortnamesof thecommandsised to notify the
contact of aserviceproblem or recovery. Multiple notification
commands should be separated by commas. All notification comm
are executed when the contact needs to be notified. The maximum
amount of time that a notification command can run is controlled by
[notification _timeoybption.

hnds

the

<host_notify_commands>

This is a list of theshortnamesof thecommandsised to notify the
contact of ahostproblem or recovery. Multiple notification command
should be separated by commas. All notification commands are
executed when the contact needs to be notified. The maximum am
of time that a notification command can run is controlled by the
[notification_timeoybption.

punt

<email_address>

This is the email address for the contact. Depending on how you
configure your naotification commands, it can be used to send out a
alert email to the contact. Under the right circumstances, the
$CONTACTEMAILS$[macrdwill contain this valuefs

<pager>

This is the pager number for the contact. It can also be an email ad
to a pager gateway (i.e. pagejoe@pagenet.com). Depending on ho
configure your notification commands, it can be used to send out a
alert page to the contact. Under the right circumstances, the

dress
W you
H

$CONTACTPAGERS$macrgwill contact thisvalue.

Contact Group Definition

Format: contactgroup[<group_name>]=<group_alias>;<contacts>

Example: contactgroup[nt-

admins]=NT Administrators;bbarker,jdoe

A contact group definition is used to group one or more contacts together for the purpose of sending out
alert/recovery notifications. When a host or service has a problem or recovers, NetSaint will find the

appropriate contact groups to

send notifications to, and notiépalactin those contact groups. This

may sound complex, but for most people it doesn’t have to be. It does, however, allow for flexibility in
determining who gets notified for particular events. The different arguments to a contact group definition

are outlinedelow.

<group_name>| This is a short name used to identify the congastp.

<group_alias> | This is a longer name or description used to identify the cogitaap.

<contacts> This is a list of theshortnamesof[contactghat should be included in this group.
Multiple contact names should be separateddigmas.

Command Definition

Format: command[<command_name>]=<command_line>

command[check-host-alive]=/usr/local/netsaint/libexec/check_ping -H

Examplel: o S STADDRESSS$ -w 1000.0.40% -2000.0.80%

command[check_pop]=/usr/local/netsaint/libexec/check_pop -H

Example2: ¢110STADDRESSS

command[check_local_disk]=/usr/local/netsaint/libexec/check_disk -w 20% -c

Example3: 1400) $ARGLS

A command definition is just that. It defines a command. Commands that can be defined include service
checks, service naotifications, service event handlers, host checks, host notifications, and host event
handlers. Command definitions can conjaiacro} but you must make sure that you include only those
macros that are "valid" for the circumstances when the command will be used. More information on what

macros are available and when they are "valid" can be foerddThe different arguments to a command
definition are outlinedbelow.

<command_name> This is a short name used to identify the command. It is referenicedtad
lhost andservicg¢definitions.

<command_line> | This is what is actually executed by NetSaint when the command is used fo
service or host checks, notificationsfementhandlerk Before the command line
is executed, all valithacrokare replaced with their respective values. See the
documentation on macros for determining when you can use different macrags.
Note that the command linerist surrounded imuotes.

ServiceDefinition

Format service[<host>]=<description>;<volatile>;<check_period>;<max_attempts>;<check_interval>;<retry_interval>;
Examplel: service[nt1]=FTP;0;24x7;3;5;1;nt-admins;120;24x7;1;1;1;icheck_ftp

interval>; _period>;<notify_recovery>;<notify_critical>;<notify_warning>;<event_handler>;<check_command>

Example2: service[nt1]=HTTP;0;24x7;3:5;1;nt-admins;240;24x7;1;1;1;;check_http2!192.168.0.2!/188

Example3: 1= 4x7;3;5;1;linux-admins;240;24x7;1;1;1;;check_local_procs!51101Z

A service definition is used to identify a "service" that runs on a host. The term "service" is used very
loosely. It can mean an actual service that runs on the host (POP, SMTP, HTTP, etc.) or some other type
of metric associated with the host (response to a ping, number of logged in users, free disk space, etc.).
The different arguments to a service definition are outlbeddw.

<host> This is theshortnameof thelhos}that the service "runs" on or is associated
with.
<description> A description of the service, which may contain spaces, dashes, and colpns

(semicolons, apostrophes, and quotation marks should be avoided). No ffwo
services associated with the same host can have thedsaortion.

<volatile>

This field is used to denote whether the service is "volatile". Services arg
normallynot volatile. More information on volatile service and how they
differ from normal services can be folneré Set this field td to mark the
service as being volatil®,to mark it as a hormakrvice.

<check_period>

This is the short name of tfiene periodthat identifies when this service can

be checked. Services checks are scheduled in such a way that they are

only

checked (or rechecked) during times that are valid within the specified service

check time period. See the "Time Periods" documentation
[operatiohsection for more information on how time periods works and
potentials problems with using themproperly.

<max_attempts>

This is the number of times that NetSaint will retry the service check if it
returns any state other than/@K state. Setting this value to 1 will cause
NetSaint to generate an alert (if the service check detected a problem) w

ithout

retrying the service check again. More information on this value can be found

in thelcheckschedulingdocumentation.

<check_interval>

This is the number of "time units" to wait before scheduling the next "reglular"
check of the service. "Regular" checks are those that occur when the sefvice is
in an[OK|state or when the service is in a non-OK state, but has already peen

recheckednax_attemptsnumber of times. Unless you've changed the
interval_length value in thémain configuratiorfile| from the default value of

60, this number will mean minutes. More information on this value can be

found in thgcheckschedulinfdocumentation.

<retry_interval>

This is the number of "time units" to wait before scheduling a re-check o

the

service. Services are rescheduled at the retry interval when the have ch@anged

to a non-OKstat¢ Once the service has been retrigak_attemptstimes

without a change in its status, it will revert to being scheduled at its "normal

rate as defined by theheck_interval value. Unless you've changed the
interval_length value in thegmain configuratioriile| from the default value of

60, this number will mean minutes. More information on this value can be

found in thdcheckschedulinfdocumentation.

<contactgroups>

This is a comma-delimited list of the short namdsaftactgroup$that

should be notified about problems or recoveries for this service. If a prol
or recovery occurs for this service, NetSaint will attempt to notify all the

lem

contacts in each contact group (depending on the notification options that are

setbelow).

<notification_interval>

This is the number of "time units" to wait before re-notifying a contact that

this service istill at a non-OK state. Unless you've changed the
interval_length value in thémain configuratiorfile| from the default value of
60, this number will mean minutes. If you set this value to 0, NetSaimati
re-notify contacts about problems for this service - only one problem
notification will be senbut.

<notification_period>

This is the short name of tfiene periodthat identifies when notifications
about problems or recoveries for this service may be sent out. If a servig
problem or recovery occurs outside valid times within this time period,

notifications will not be sent out. See the "Time Periods" documentation
theory ofoperatiopsection for more information on how time periods work
and potentials problems with using thenproperly.

<notify_recovery>

This value determines whether or not alert notifications will be generatec
the service recovers from a non-OK state. Set this valliéf the service
should generate alerts for recoveri@,it shouldn’t. Note: If &contadtis

configured to not receive recovery notifications, they will not be notified ¢f

any recoveries for this service, regardless ofgbiting.

<notify_critical>

This value determines whether or not alert notifications will be generatec
the service is in [€RITICAL] state. Set this value foif the service should
generate alerts for critical stat@df it shouldn’t. Note: If acontadtis
configured to not receive critical notifications, they will not be notified of
critical states for this service, regardless of seiding.

if

ANy

<notify_warning>

This value determines whether or not alert notifications will be generatec
the service is in or UNKNOWN state. Set this value 1df the
service should generate alerts for warning/unknown statei,shouldn't.
Note: If gcontadtis configured to not receive warning/unknown notificatio
they will not be notified of any warning/unknown states for this service,
regardless of thisetting.

NS,

<event_handler>

This is theshortnameof thelcommanfthat should be run whenever a chan
in thefstatubof the services is detected (i.e. whenever it goes down or
recovers). Read the documentatiofesenthandlerfor a more detailed
explanation of how to write scripts for handling events. If you do not wish
define an event handler for the service, leave this option blank (as show

pe

to
N in

the examples above). The maximum amount of time that the event handler

command can run is controlled by nent _handler_timedaiption.

<check_command> This is the command that NetSaint will run in order to check the status of the
service. There are three command formats that casdxt

1. "Vanilla" The command name is just the namga@hmantthat
Command: was previously defined. Example 1 above shows this
type ofcommand.

2. Command This is basically the same as the "vanilla" command

w/ style, but with command options separated by a

Arguments: character. Example 2 above shows this type of
command. Arguments are separated from the command
name (and other arguments) with theharacter. The
command should be defined to make use of the $ARGx$
In Example 2 above, $ARG1$ would resolve tc
192.168.0.2$ARG2$ would resolve th and $ARG3$
would resolve t@8 for that particular service. Note:
NetSaint will handle a maximum of sixteen command
line arguments (JARG1$ througiARG16$).

3. "Raw" You may optionally specify an actual command line to
Command be executed. To do so you must enclose the entire
Line: command line in double quotes. The outer double quotes

will be stripped off before the command is actually
executed. No macros are processed inside of raw
command lines. Note: | haven't really tested this format
too much, but it should work. Remember that the
command must return a profstatudevel See the
documentation ofriting plugingfor numeric codes for

each statukevel.

The maximum amount of time that the service check command can run |s
controlled by thgservice check timeduaiption.

Time Period Definition

Format: timeperiod[<timeperiod_name>]=<timeperiod_alias>;<sunday_ranges>;<monday_ranges>;<tuesday_ranges>;<wenesday_ranges>;<thursday_ranges>;<friday_ranges>;<saturday_ranges>;
Examplel: timeperiod[24x7]=All Day, Every Day;00:00-24:00;00:00-24:00;00:00-24:00;00:00-24:00;00:00-24:00;00:00-24:00;00:00-24:00

Example2: timeperiod[workhours]="Normal" Working Hours;;09:00-17:00;09:00-17:00;09:00-17:00;09:00-17:00;09:00-17:00;

Example3: timeperiod[none]=No Time Is A GoodTime;;;;;;;

timeperiod[nonworkhours]=Non-Work
Hours;00:00-24:00,00:00-09:00,17:00-24:00;00:00-09:00,17:00-24:00;00:00-09:00,17:00-24:00;00:00-09:00,17:00-24:00;00:00-09:00,17:00-24:00,00:00-24:00

Example4:
A time period is a list of times during various days that are considered to be "valid" times for notifications
and service checks. It consists one or more time periods for each day of the week that "rotate” once the
week has come to an end. Exceptions to the normal weekly time range rotationssap®riet.

<timeperiod_name>| This is a short name used to identify the timeeiod.

<timeperiod_alias> | This is a longer name or description used to identify the piened.

<xday_ranges> This is a comma-delimited list of time ranges that are "valid" times for a
particular day of the week. Notice that there are seven different days for which
you must define time ranges (Sunday through Saturday). Each time range [s in
the form ofHH:MM-HH:MM , where hours are specified on a 24 hour clock.
For example00:15-24:00means 12:15am in the morning for this day until
12:20am midnight (a 23 hour, 45 minute total time range). If you leave a
particular day’s time range blank, it means that there are no "valid" times fdr that
day.

Service EscalatiorDefinition

Format: serviceescalation[<host>;<description>]=<first_notification>-<last_notificiation>;<contact_groups>;<notification_interval>

serviceescalation[linux1;ZombieProcesses]=3-5;linux-admins,managers;0

Examples: serviceescalation[nt1;HTTP]=6-0;nt-admins,managers,everyone;30

A service escalation definition @mpletelyoptionaland is used to escalate notifications for a particular
More information on how notification escalations work can be finand

<host>

This is theshortnameof thejhos}that the service "runs” on or is associated
with.

<description>

A description of the service, which may contain spaces, dashes, and col
(semicolons, parentheses, and apostrophes are not allowed). No two se
associated with the same host can have the das@iption.

pbns
rvices

<first_notification>

This is a number that identifies tfiest notification for which this escalation
is effective. For instance, if you set this value to 3, this escalation will on
used if the service is in a non-OK state long enough for a third escalatio
goout.

y be
N to

<last_notification>

This is a number that identifies theest notification for which this escalation
effective. For instance, if you set this value to 5, this escalation will not b
used if more than five notifications are sent out for the specified service.
Setting this value to 0 means to keep using this escalation entry forever
matter how many notifications gut).

[¢)

no

<contact_groups>

This is a list of theshortnamesof thefcontactgroup$that should be notified
when a service notification is escalated. Multiple contact groups should
separated bgommas.

he

<notification_interval>

The interval at which notifications should be made while this escalation i
valid. If you specify a value of 0 for the interval, NetSaint will send the fir
notification when this escalation definition is valid, but will then prevent g
more problem notifications from being sent out for the host. Notifications
sent out again until the service recovers. This is useful if you want to sto

S

5t
ny
are

p

having notifications sent out after a certain amount of time. Note: If multiple

escalation entries for a service overlap for one or more notification range
smallest notification interval from all escalation entriessed.

s, the

Host Group EscalationDefinition

Format: hostgroupescalation[<group_name>]=<first_notification>-<last_notificiation>;<contact_groups>;<notification_interval>

Examples:

hostgroupescalation[nt-servers]=3-5;nt-admins,managers;0
hostgroupescalation[nt-servers]=6-0;nt-admins,managers,everyone;60

A host group escalation definitionégempletelyoptionaland is used to escalate notifications for hosts in a
particular hostgroup. More information on how notification escalations work can belfetéd

<group_name>

This is a short name used to identify the host group (as previously defing
[hostgroupdefinition) that the escalation should appdy

bd in a

<first_notification>

This is a number that identifies thisst notification for which this escalation
is effective. For instance, if you set this value to 3, this escalation will on
used if a host in the hostgroup is down or unreachable long enough for &
escalation to gout.

y be
 third

<last_notification>

This is a number that identifies theest notification for which this escalation
effective. For instance, if you set this value to 5, this escalation will not b
used if more than five notifications are sent out for any particular host in
specified hostgroup. Setting this value to 0 means to keep using this esd
entry forever (no matter how many notificationsags).

S

e

the
alation

<contact_groups>

This is a list of theshortnamesof thelcontactgroup$that should be notified
when a host notification is escalated. Multiple contact groups should be
separated bgommas.

<notification_interval>

The interval at which notifications should be made while this escalation i
valid. If you specify a value of O for the interval, NetSaint will send the fir|
notification when this escalation definition is valid, but will then prevent g
more problem notifications from being sent out for the host. Notifications
sent out again until the host recovers. This is useful if you want to stop h
notifications sent out after a certain amount of time. Note: If multiple

5
St

ny
are
aving

escalation entries for a hostgroup overlap for one or more notification rapges,
the smallest notification interval from all escalation entrieséed.

Service Dependencyefinition

Format: servicedepency[<dependent_host>;<dependent_description>]=<host>;<description>;<execution_failure_options>;<notification_failure_options>

servicedependency[ntl;WWW1Website]=nt1;HTTP;;wc
Examples: servicedependency[ntl;WWW2Website]=nt1;HTTP;wcu;wcu
servicedependency[nt1;WWW?2 Website]=nt2;SQLServer;c;

Service dependency definitions @@mpletelyoptional They are used to control both #eecution of

servicesandnotifications forservicesbased on the status of other services that are being monitored.
Service dependencies are mainly targeted at advanced users who have complicated monitoring setups.
More information on how service dependencies work (read this!) can beffed

<dependent_host>

This is theshortnameof thelhos}that thedependenservice "runs" on
or is associatedith.

<dependent_description>

This is thedescriptionof thedependeriservicé

<host>

This is theshortnameof thelhos}that the serviceve are dependingn
"runs” on or is associateudth.

<description>

This is thedescriptionof thefservicéwe are dependingn.

<execution_failure_options>

These options are used to define situations where the dependent
service shoulahot be executed. If the servigee are dependingnis

in one of the failure states we specify, tiependenservice will not
be executed. Valid options are a combination of one or more of th
following: o = fail on an OK statey = fail on a WARNING statay =
fail on an UNKNOWN state, ancl= fail on a CRITICAL state.
Example: If you specifpcuin this field, the dependency will fail if
the serviceve're dependingnis in either an OK, a CRITICAL, or a
UNKNOWN state and thdependenservice will not be executed.
You do not have to specify any failure options in frakl.

e

<notification_failure_options>

These options are used to define situations where notifications fo
dependent service shouldt be sent out. If the servieee are
dependingnis in one of the failure states we specify, notifications
for thedependenservice will not be sent to contacts. Valid options
are a combination of one or more of the followiag: fail on an OK
statew = fail on a WARNING statay = fail on an UNKNOWN state
andc = fail on a CRITICAL state. Example: If you specifyin this
field, the dependency will fail if the servieee're dependingnis in a
WARNING state and notifications for tliiependenservice will not
be sent out. You do not have to specify any failure options in this

I the

field.

CGlI Configuration File Options

Notes
When creating and/or editing configuration files, keep the followingimd:

1. Lines that start with a '#' character are taken to be comments and are not processed
2. Variables names must begin at the start of the line - no white space is allowed before the name
3. Variable names arease-sensitive

SampleConfiguration

A sample CGI configuration file can be created by runningriake config' command. The default
name of the CGI configuration file rscgi.cfg

>
(@}
D
X

ain configuration fildocatio
Physical HTMLpat
RL HTML pat
rocess checkommang
Authenticationusageg
efault usename
stem/process informati@tcess
stem/process commaadces
onfiguration informatioraccess
lobal host informatioacces
lobal host commandcces
lobal service informationcces
lobal service commanatcess
xtended hosnhformatio
Extended servicemformatio
tatusmap CGI backgroumda
tatuswrl CGl includevorl
Alert window suppressidn
Gl refreshrat
[Audio alert

F

i

HHH

Main Configuration File Location

Format: main_config_file=<file_name>

Example: main_config_file=/usr/local/netsaint/etc/netsaint.cfg

This specifies the location of ygarain configuratiorfile} The CGls need to know where to find this file
in order to get information about configuration information, current host and service status,

Physical HTML Path

Format: physical_html_path=<path>

Example: physical_html_path=/usr/local/netsaint/share

This is thephysicalpath where the HTML files for NetSaint are kept on your workstation or server.
NetSaint assumes that the documentation and images files (used by the CGls) are stored in subdirectories
calleddocs/andimages/respectively.

URL HTML Path

Format: url_html_path=<path>

Example: url_html_path=/netsaint

If, when accessing NetSaint via a web browser, you point to an URL like
http://www.myhost.com/netsaint this value should bfaetsaint Basically, its the path portion of the
URL that is used to access the NetSaint HTpalges.

Process CheckCommand

Format: process_check_command=<command_line>

Example: process_check_command=/usr/local/netsaint/libexec/check netsaint
/usr/local/netsaint/var/status.log 5 '/usr/local/netsaint/bin/netsaint -d
/usr/local/netsaint/etc/netsaint.cfg’

This is the command that the CGls should use to check the status of the NetSaint process. This provides
the CGls (as well as yourself) with some idea of whether or not NetSaint is still running. If the CGls
cannot determine whether or not NetSaint is running on the local machine, some features like external
commands in thextendednformationandcommanfiCGIls may not be available. The process check
command that you specify should follow the sfquilelinelthat are required of thaugins.

Notes:

e Thefcheck netsaihplugin is ideal for the purpose of checking both the status of the NetSaint process
and the "freshness" of the data in the status log. | would highly recommend using it in this situation.

e |[f you are running a chroot’ed web server, you will have to place the plugin (or whatever you're
using) in thesbin/ subdirectory of your NetSaiiristallation.

Authentication Usage

Format: use_authentication=<0/1>

Example: use_authentication=1

This option controls whether or not the CGls will use the authentication and authorization functionality
when determining what information and commands users have access to. | would strongly suggest that
you use the authentication functionality for the CGls. If you decide not to use authentication, make sure to
remove thggommandCGl to prevent unauthorized users from issuing commands to NetSaint. The CGlI

will not issue commands to NetSaint if authentication is disabled, but | would suggest removing it
altogether just to be on the safe side. More information on how to setup authentication and configure
authorization for the CGls can be fouiner¢

e (0 = Don’t use authentication functionality
e 1 = Use authentication and authorization functiondtigfault)

Default User Name

Format: default_user_name=<username>

Example: default_user_name=guest

Setting this variable will define a default username that can access the CGls. This allows people within a
secure domain (i.e., behind a firewall) to access the CGls without necessarily having to authenticate to the
web server. You may want to use this to avoid having to use basic authentication if you are not using a
secure server, as basic authentication transmits passwords in clear text buerré

Important: Do not define a default username unless you are running a secure web server and are sure that
everyone who has access to the CGls has been authenticated in some manner! If you define this variable,
anyone who has not authenticated to the web server will inherit all rights you assigrusethis

System/Process InformationAccess

Format: authorized_for_system_information=<userl>,<user2>,<user3>,...<Uger

Example: authorized_for_system_information=netsaintadmin,theboss

This is a comma-delimited list of namesanithenticatediserswho can view system/process information

in thelextended informatio€GI, Users in this list areot automatically authorized to issue system/process
commands. If you want users to be able to issue system/process commands as well, you must add them to
thelauthorized for_system commahdsiable. More information on how to setup authentication and
configure authorization for the CGls can be fofedd

System/Process Comman@ccess

Format: authorized_for_system_commands=<userl>,<user2>,<user3>,...<user

Example: authorized_for_system_commands=netsaintadmin

This is a comma-delimited list of namesanfthenticatediserswho can issue system/process commands

via thdcommandCG]J] Users in this list areot automatically authorized to view system/process

information. If you want users to be able to view system/process information as well, you must add them
to thgauthorized for _system informat|mariable. More information on how to setup authentication and
configure authorization for the CGls can be folhedg

Configuration Information Access

Format: authorized_for_configuration_information=<userl>,<user2>,<user3>,...<usep

Example: authorized_for_configuration_information=netsaintadmin

This is a comma-delimited list of namesanithenticatediserswho can view configuration information in
thelconfigurationCGIl Users in this list can view information on all configured hosts, host groups,
services, contacts, contact groups, time periods, and commands. More information on how to setup
authentication and configure authorization for the CGls can be

Global Host Information Access

Format: authorized_for_all_hosts=<userl>,<user2>,<user3>,...<usef

Example: authorized_for_all_hosts=netsaintadmin,theboss

This is a comma-delimited list of namesanithenticatediserswho can view status and configuration
information for all hosts. Users in this list are also automatically authorized to view information for all
services. Users in this list anet automatically authorized to issue commands for all hosts or services. If
you want users able to issue commands for all hosts and services as well, you must add them to the
[authorized for all host commaiaariable. More information on how to setup authentication and
configure authorization for the CGls can be folhedg

Global Host CommandAccess

Format: authorized_for_all_host_commands=<userl>,<user2>,<user3>,...<user

Example: authorized_for_all_host_commands=netsaintadmin

This is a comma-delimited list of namesanithenticatediserswho can issue commands for all hosts via
thelcommandCG]| Users in this list are also automatically authorized to issue commands for all services.
Users in this list araot automatically authorized to view status or configuration information for all hosts

or services. If you want users able to view status and configuration information for all hosts and services
as well, you must add them to thethorized for_all hogtgariable. More information on how to setup
authentication and configure authorization for the CGls can be

Global Service Information Access

Format: authorized_for_all_services=<userl><user2>,<user3>,...<usef

Example: authorized_for_all_services=netsaintadmin,theboss

This is a comma-delimited list of namesanithenticatediserswho can view status and configuration
information for all services. Users in this list @ automatically authorized to view information for all
hosts. Users in this list amet automatically authorized to issue commands for all services. If you want
users able to issue commands for all services as well, you must add them to the

[authorized for_all service _commahdsiable. More information on how to setup authentication and
configure authorization for the CGls can be fofedd

Global Service CommandAccess

Format: authorized _for_all_service_commands=<userl>,<user2>,<user3>,...<user

Example: authorized_for_all_service_commands=netsaintadmin

This is a comma-delimited list of namesanithenticatediserswho can issue commands for all services

via thdcommandCGlJ} Users in this list areot automatically authorized to issue commands for all hosts.
Users in this list araot automatically authorized to view status or configuration information for all hosts.

If you want users able to view status and configuration information for all services as well, you must add
them to thgauthorized for_all_serviceariable. More information on how to setup authentication and
configure authorization for the CGls can be folhedg

Extended HostInformation

Format: hostextinfo[<host_name>]=<notes_url>;<icon_image>;<vrml_image>;<gd2_image>;<alt_tag>;<x_2d><y_2d>;<x_3d>,<y_3d>,<z_3d>

Example: hostextinfo[router3]=/hostinfo/router3.html;cat5000.gif;cat5000.jpg;cat5000.gd2;Cisco Cataly$000;100,50;3.5,2.0,5.5

Extended host information entries are basically used to make the output fistattigstatusmajp
[statuswij] andextinfd CGls look pretty. They have no effect on monitoring and are comptgtétynal.

<host_name> This is a short name of the host, as defined ifnts configuratioriile}

<notes_url>

This is an optional URL that can be used to provide more information ak
the host. If you specify an URL, you will see a link that says "Notes Abo
This Host" in thegextendednformationCGI (when you are viewing
information about the specified host). Any valid URL can be used. If yoU
plan on using relative paths, the base path will the the same as what is
to access the CGls (i4egi-bin/netsaini. This can be very useful if you
want to make detailed information on the host, emergency contact meth
etc available to other suppaitiaff.

out
Dt

Ised

ods,

<icon_image>

The name of a GIF, PNG, or JPG image that should be associated with
host. This image will be displayed in {e&tugsandextendednformation
CGls. The image will look best if it is 40x40 pixels in size. Images for ho
are assumed to be in tlegos/subdirectory in your HTML images
directory (i.e/usr/local/netsaint/share/images/logos

this

Sts

<vrml_image>

The name of a GIF, PNG, or JPG image that should be associated with
host. This image will be used as the texture map for the specified host
[statuswilICGI. Unlike the image you use for thizon_image>variable,
this one should probabhyot have any transparency. If it does, the host
object will look a bit wierd. Images for hosts are assumed to be loghs/
subdirectory in your HTML images directory (i.e.
/usr/local/netsaint/share/images/logos

this

n the

<gd2_image>

The name of a GD2 format image that should be associated with this ha
This image will be used in the image created bystheismaCGIl. GD2
images can be created from PNG images by usingrtgegd?2 utility
supplied with Thomas Boutellgdlibrary] The GD2 images should be
created iruncompressetbrmat in order to minimize CPU load when the
statusmap CGl is generating the network map image. The image will 10g
best if it is 40x40 pixels in size. You can leave these option blank if you
not using the statusmap CGI. Images for hosts are assumed to be in the
logos/subdirectory in your HTML images directory (i.e.
/usr/local/netsaint/share/images/logos

St.

are

<alt_tag>

—

An optional string that is used in the ALT tag of the image specified by
<icon_image>argument. The ALT tag is used in both [hatufand

[StatusmaCGls.

he

http://www.boutell.com/gd

<x_2d><y 2d>

Coordinates to use when drawing the host ifst&ismaCGI.
Coordinates should be given in positive integers, as the correspond to
physical pixels in the generated image. The origin for drawing (0,0) is
upper left hand corner of the image and extends in the positive x direc
(to the right) along the top of the image and in the positive y direction
(down) along the left hand side of the image. For reference, the size o
icons drawn is usually about 40x40 pixels (text takes a little extra spag
The coordinates you specify here are for the upper left hand corner of
host icon that is drawn. Note: Don’'t worry about what the maximum X &
y coordinates that you can use are. The CGI will automatically calculat
maximum dimensions of the image it creates based on the largest x al
coordinates you specify. Also of note, if you want to create 2-D coordir
for use in drawing the hosts in the statusmap CGI by visually moving h
around, | would suggest giving David KmocSaintmapaddon apin.

n|the
tipn

f the
e).
the
and
e|the
nd y

ngtes
osts

<x_3d>,<y_3d>,<z_3d>

Coordinates to use when drawing the host ifste&iswilCGI. Coordinates
can be positive or negative real numbers. The origin for drawing is
(0.0,0.0,0.0). For reference, the size of the host cubes drawn is 0.5 un
each side (text takes a little more space). The coordinates you specify|
are used as the center of the wsie.

D

it$ on
Here

Extended Servicdnformation

Format: serviceextinfo[<host_name>;<svc_description>]=<notes_url>;<icon_image>;<alt_tag>

Example: serviceextinfo[router3;PING]=/serviceinfo/router3.htmi#PING;ping.gif;PING Stats

Extended service information entries are basically used to make the output flstatubandextinfq
CGls look pretty. They have no effect on monitoring and are complgtétynal.

<host_name> This is a short name of the host associated with the service, as specified in the
|servicedefinition

<svc_description>| This is a description of the service, as specified ifsémeicedefinition

<notes_url> This is an optional URL that can be used to provide more information about the
service. If you specify an URL, you will see a link that says "Notes About Thig
Service" in thgextendednformationCGI (when you are viewing information abgut
the specified service). Any valid URL can be used. If you plan on using relatiye
paths, the base path will the the same as what is used to access the CGils (..
/cgi-bin/netsaint. This can be very useful if you want to make detailed

information on the service, emergency contact methods, etc available to othgr
supportstaff.

1%

<icon_image> The name of a GIF, PNG, or JPG image that should be associated with this gervice.
This image will be displayed in tigatugandextendednformationCGls. The
image will look best if it is 40x40 pixels in size. Images for hosts are assumed to be
in thelogos/subdirectory in your HTML images directory (i.e.
lusr/local/netsaint/share/images/logos

<alt_tag> An optional string that is used in the ALT tag of the image specified by the
<icon_image>argument. The ALT tag is used in EtatuCGl.

Statusmap CGI Backgroundimage

Format: statusmap_background_image=<gd2_image>

Example: statusmap_background_image=statusmapbg.gd2

This option allows you to specify an image to be used as a backgroungiattleEnaCGl, It is assumed
that the image resides in the HTML images path (i.e. /usr/local/netsaint/share/images). This path is
automatically determined by appending "/images" to the path specified [pipythieal _html_path
directive. Note: The image file must be in GD2 format (preferably in uncompriesseat)!

Statuswrl CGI Include World

Format: statuswrl_include=<vrml_file>
Example: statuswrl_include=myworld.wrl
This option allows you to include your own objects in the generated VRML world. It is assumed that the

file resides in the path specified by jpigysical_html_pathlirective. Note: This file must be a fully
qualified VRML world (i.e. you can view it by itself in a VRMbirowser).

Alert Window Suppression

Format: suppress_alert_ window=<0/1>
Example: suppress_alert_window=1
This option allows you to specify whether or not you want to permanently suppress the host alert window

in thejstatusCGIll Normally the alert window will be displayed if one or more hosts is down or
unreachable.

® (0 =Don't suppress alert window, allow it to be displayed (default)
e 1 =Don't display alert window at aniyne

CGI Refresh Rate

Format: refresh_rate=<rate _in_seconds>

Example: refresh_rate=90

This option allows you to specify the number of seconds between page refreshestaiugigatusmajp

andextinfd CGls.

Audio Alerts

Formats: host_unreachable_sound=<sound_file>
host_down_sound=<sound_file>
service_critical_sound=<sound_file>
service_warning_sound=<sound_file>
service_unknown_sound=<sound_file>

Examples: host_unreachable_sound=hostu.wav
host_down_sound=hostd.wav
service_critical_sound=critical.wav
service_warning_sound=warning.wav
service_unknown_sound=unknown.wav

These options allow you to specify an audio file that should be played in your browser if there are
problems when you are viewing If there are problems, the audio file for the most critical

type of problem will be played. The most critical type of problem is on or more unreachable hosts, while
the least critical is one or more services in an unknown state (see the order in the example above). Audio
files are assumed to be in teedia/ subdirectory in your HTML images directory (i.e.
{usr/local/netsaint/share/media

Verifying Your NetSaint Configuration

Verifying The Configuration From The Command Line

Once you've entered all the necessary data into the configuration file, its time to do a sanity check.
Everyone make mistakes from time to time, so its best to verify what you've entered. NetSaint
automatically runs a "pre-flight check” before before it starts monitoring, but you also have the option of
running this check manually before attempting to start NetSaint. In order to do this, you must start
NetSaint with thev command line argument &dlows...

/netsaint -v<main_config_file>

Note that you should be entering the path/filename of y@in configuration file as the second argument
andnotyour host configuration file. NetSaint will read your main configuration file and from there
determine where your host configuration file resides (remembefghéle option in thgmair config

file?).

Relationships Verified During The Pre-Flight Check

During the "pre-flight check”, NetSaint verifies that you have defined the data relationships necessary for
monitoring. Services, hosts, host groups, contacts, contact groups, and time periods are all related and
need to be setup properly in order for things to run. This is a list of the basic things that NetSaint attempts
to check before it will starnonitoring...

Verify that all contacts are a member of at least one contact group.

Verify that all contacts specified in each contact group are valid.

Verify that all hosts are a member of at least one host group.

Verify that all hosts specified in each host group are valid.

Verify that all hosts have at least one service associated with them.

Verify that all commands used in service and host checks are valid.

Verify that all commands used in service and host event handlers are valid.

Verify that all commands used in contact service and host notifications are valid.

Verify that all notification time periods specified for services, hosts, and contact are valid.
. Verify that all service check time periods specified for servicesait

©oNoO~WNPE

[=Y
o

Fixing Configuration Errors

If you've forgotten to enter some critical data or just plain screwed things up, NetSaint will spit out a
warning or error message that should point you to the location of the problem. Error messages generally
print out the line in the configuration file that seems to be the source of the problem. On errors, NetSaint
will often exit the pre-flight check and return to the command prompt after printing only the first error that

it has encountered. This is done so that one error does not cascade into multiple errors as the remainder of
the configuration data is verified. If you get any error messages you'll need to go and edit your
configuration files to remedy the problem. Warning messagegatarallybe safely ignored, since they

are only recommendations and nequirements.

Where To Go FromHere

Once you've verified your configuration files and fixed any errors, you can be reasonably sure that
NetSaint will start monitoring the services you've specified. QstadingNetSaink

Starting NetSaint

IMPORTANT: Before you actually start NetSaint, you'll have to make sure that you have configured it
properly (see the docs on {lmairf andhostfiles),verified the configdatd andinstalled some plugins on
your systerhPlugins are distributed separately from NetSaint, but are necessary if you actually want to
monitor anything. You can grab the plugins from the downloads pgmaitwww.netsaint.olg

Methods For Starting NetSaint

There are basically four different ways you can statSaint:

1. Manually, as a foreground process (useful for initial testing and debugging)
2. Manually, as a background process

3. Manually, as a daemon

4. Automatically at systerhoot

Let's examine each methdudiefly...

Running NetSaint Manually as a ForegroundProcess

If you enabled the debugging options when running the configure script (and recompiled NetSaint), this
would be your first choice for testing and debugging. Running NetSaint as a foreground process at a shell
prompt will allow you to more easily view what's going on in the monitoring and notification processes.

To run NetSaint as a foreground process for testing, invoke NetSaitttifke

/netsaint<main_config_file>

Note that you must specify the path/filename ofrtteén configuration file on the command line. Passing
the name of the host configuration file will result in an error message and priggnaimation.

To stop NetSaint at any time, just press CTRL-C. If you've enabled the debugging options you'll probably
want to redirect the output to a file for easier reviater.

Running NetSaint Manually as a BackgroundProcess

To run NetSaint as a background process, invoke it with an ampersatidws...
/netsaint <main_config_file>&

Note that you must specify the path/filename ofrtteén configuration file on the command line. Passing
the name of the host configuration file will result in an error message and priggnaimation.

Running NetSaint Manually as aDaemon

In order to run Netsaint in daemon mode you must supphdtBevitch on the command line &dlows...

http://www.netsaint.org/

/netsaint -d<main_config_file>

Running NetSaint Automatically at SystemBoot

When you have tested NetSaint and are reasonably sure that it is not going to crash, you will probably
want to have it start automatically at boot time. To do this (in Linux) you will have to create a startup
script in your/etc/rc.d/init.d/ directory. You will also have to create a link to the script in the runlevel(s)

that you wish to have NetSaint to start in. I'll assume that you know what I'm talking about and are able to
dothis.

A sample init script (hamedlemon-init) is created in the base directory of the NetSaint distribution
when you run the configure script. You can install the sample script to your /etc/rc.d/init.d directory using
the’make install-daemoninit’ command, as outlined in thestallationinstructions.

The sample init scripts are designed to work under Linux, so if you want to use them under FreeBSD,
Solaris, etc. you may have to do a littiecking...

Stopping and RestartingNetSaint

Directions on how to stop and restart NetSaint can be

Stopping And Restarting NetSaint

Once you have NetSaint up and running, you may need to stop the process or reload the configuration data
"on the fly". This section describes how to do jinsit.

IMPORTANT: Before you restart NetSaint, make sure that you [aaxiied the configuratiodatqusing
the -v command line switclespeciallyif you have made any changes to yjoair orhos}config files. If
NetSaint encounters problem with one of the config files when it restarts, it will log an ersiopnd

Stopping And Restarting With The Init Script

If you have installed the sample init script to your /etc/rc.d/init.d directory you can stop and restart
NetSaint easily. If you haven't, skip this section and read how to do it manually below. I'll assume that
you named the init scriptetsaintin the examplebelow...

DesiredAction | Command Description

This kills NetSaint and deletes the current statug
log

This kills NetSaint, deletes the current status log
and then starts NetSaint again

StopNetSaint letc/rc.d/init.d/netsaint stop

RestartNetSaint | /etc/rc.d/init.d/netsaint restart

Reload Sends a SIGHUP to the NetSaint process, cauging
Configuration /etc/rc.d/init.d/netsaint reload | it to flush its current configuration data, reread the
Data configuration files, and start monitorirgain

Stopping, restarting, and reloading NetSaint are fairly simple with an init script and | would highly
recommend you use one if at pdissible.

Manually Stopping and RestartingNetSaint

If you aren’t using an init script to start NetSaint, you'll have to do things manually. First you'll have to
find the process ID that NetSaint is running under and then you’ll have to Ugk deenmand to

terminate the application or make it reload the configuration data by sending it the proper signal.
Directions for doing this are outlindxklow...

Finding The ProcesdD

First off, you will need to know the process id that NetSaint is running as. To do that, just type the
following command at a shedkompt:

ps axu | grepnetsaint

The output should look something like this:

netsaint 6808 0.0 0.7 840 352 p3S 13:44 0:00 grep netsaint
netsaint 11149 0.2 1.0 868 488 ? S Feb 27 6:33 ./netsaint netsaint.cfg

From the program output, you will notice that NetSaint was started byeisaint and is running as
process idl1149

Stopping NetSaint

In order to stop NetSaint, use tki# command afollows...
kill 11149
You should replac&1149with the actual process id that NetSaint is running as onrgaahine.

Restarting NetSaint

If you have modified the configuration data, you will want to 'restart’ NetSaint and have it re-read the new
configuration. If you have changed the source code and recompiled the main netsaint executable you
shouldnot use this method. Instead, stop NetSaint by killing it (as outlined above) and restart it manually.
Restarting NetSaint using the method below does not actually reload NetSaint - it just causes NetSaint to
flush its current configuration, re-read the new configuration, and start monitoring all over again. To
restart NetSaint, you need to send $h@HUP signal to NetSaint. Assuming that the process id for

NetSaint isL1149(taken from the example above), use the follovdiogmand:

kill -HUP 11149

Remember, you will need to replat&l149with the actual process id that NetSaint is running as on your
machine.

NetSaint Plugins

Obtaining Plugins

Plugin development for NetSaint has been moved over to SourceForge. The NetSaint plugin development
project page (where the latest version of by plugins can always be found) is located at
[http://sourceforge.net/projects/netsaintglug/

How Do | Use PluginX?

Documentation on how to use individual pluginads supplied with the core NetSaint distribution. You
should refer to the latest plugin distribution for information on using plugins. Karl DeBisschop, lead
plugin developer/maintainer points out fodowing:

All plugins that comply with minimal development guideline for this project include internal
documentation. The documentation can be read executing plugin with the *-h’ option (*--help’ if long
options are enabled). If the *-h’ option does not work, thatigea

For example, if you want to know how the check_http plugin works or what options it accepts, you should
try executingeither:

.Icheck_httpd--help
or
Jcheck_httpd--h

Command Definition Examples ForServices

The main plugin distribution includes a sanjplafig file] (calledcommands.cfg that contains examples

on how to define service and host check commands using the latest plugins. You can include the command
definitions found in this sample config file by using [the_filg directive to point to the location of the
command.cfdfile.

It is important to note that command definitions found in sample config files in the core NetSaint
distribution are probablgot accurate as to command line parameters, etc when it comes to the plugins.
They are simply provided as examples of how to deforemands.

http://sourceforge.net/projects/netsaintplug/

Plugin DevelopmentGuidelines

Plugin development for NetSaint has been moved oy@otwceFordeThe NetSaint plugin development
project page can be fouféré

The latest version of the plugin developers guide can be folhitbdtnetsaintplug.sourceforge.net/doc/

http://www.sourceforge.net/
http://sourceforge.net/projects/netsaintplug/
http://netsaintplug.sourceforge.net/doc/

NetSaint Addons

The following is a description of various "addons" that are available for NetSaint. These and other addons
can be obtained from the downloads page on the NetSaint wighsienetsaint.orjy

Index

[c_statup Console interface for viewing status of monitosedvices

[neal- Web-based administration interface KetSaint

[netsaint_mrlg MRTG scripts for graphing host and service stattegmation
[netsaint_statd Perl daemon and plugins for monitoring remote hdstmation
[nrpé- Daemon and plugin for executing plugins on renhotets

[nrpep- Service and plugin for executing plugins on renfatsts

nsd- Web-based administration interface etSaint

[nsc&- Daemon and client program for sending passive check results acrossabek
[pscwatch- Watchdog daemon that ensures passive service checks arsuiginiged
[saintmap- Perl/TK application that creates 2-D drawing coordinates for hosts from a drag and drop visual
interface

cl_status- Console interface for viewing status of monitoredervices

Author: AdamBowen

Description: This program is designed to run in a console and display the current status of
monitored hosts and services. It uses ncurses to display as many status lines as
possible based on the screen size settings. It will also make the console beep and flash
if there are any problems. You can specify the rate at which the status information is
refreshed from the NetSaint statag.

neat- Web-based administration interface forNetSaint

Author: JasorBlakey

Description: NetSaint Easy Administration Tool (NEAT) is a web administration interface for
NetSaint that is written in Perl. It allows you to add/edit/delete definitions in your host
configuration file and restart NetSaint upon completion of the configuration changes.
Unlike|nsg it does not require a database to store your configurdditan

netsaint_mrtg - MRTG scripts for graphing NetSaint host and service statusformation

http://www.netsaint.org/

Author: RichardMayhew
Overview: Allows you to producfMRTG graphs of NetSaint host and service statfegmation

Files: - Perl script that obtains the total number of hosts that are
mrtghost_total.pl
up anddown

- Perl script that obtains the total number of services that

mrtgsvc_total.pl are up andiown

- Perl script that obtains the total number of services that

mrtgsvehost_total.pl are up and down on a particutarver

mrtasvetvo totalpl Perl script that obtains the total number of services (of a
gsvelyb_ P particular type) that are up addwn
Description: This package includes two scripts which allow MRTG to generate graphs of host and
service status totals, as reported by NetSaint. The scripts scan the NetSaint status log
to determine the total number of services or hosts that have problems or are okay.

Examples of how to incorporate the scripts with MRTG are provided in the
README.mrtg file.

Notes: ® You must be runninyRTGlto actually make use of thimckage

netsaint_statd- Perl daemon and plugins for monitoring remote hosinformation

http://ee-staff.ethz.ch/~oetiker/webtools/mrtg/mrtg.html
http://ee-staff.ethz.ch/~oetiker/webtools/mrtg/mrtg.html

Author: Nick Reinking

Overview: Allows you to monitor disk usage, load average, processes, and users onhestste

Files: netsaint_statd - Perl daemon that runs on rembtests

- Perl plugin that is executed by NetSaint to check remote

check_disk.pl host disk information [singldisks]

- Perl plugin that is executed by Netsaint to check remote

check_all_disks.pl ;o\ information. [all but ignoredisks]

- Perl plugin that is executed by NetSaint to check remote

check users.pl . .
- P host useinformation

- Perl plugin that is executed by NetSaint to check remote

check_procs.pl host procesmformation

- Perl plugin that is executed by NetSaint to check remote

check_load.pl host loadnformation
Changelog - Changes recently madernetsaint_statd
README - Command options and arguments (iosts.cfg)

Description: netsaint_statd is a daemon which allows a NetSaint host to get information such as
process count, users, disk usage, and load information using the corresponding plugin
scripts. The daemon does not process the system information in anyway. It merely
collects the information and hands it back to the calling script to do with as it pleases.

The daemon script is designed in such a way as to allow for easy porting to other
OSes (as long as you have Perl installed). Adding other checks should also be easy by
adding the appropriate sections in the command list for netsaint_statd. Currently
supported OSes are HP-UX, Linux, Solaris/SunOS, IRIX, OSF1, FreeBSD, AlX,
OpenBSD, and NEXTSTEP. The only requirements for getting your OS supported are
the standard UNIX utilities likes, df, etc. Host restrictions are just a small list of IPs

to listen to (or you can have it listen to everybody). netsaint_statd is designed to allow
easy addition of extra remote systehecks.

Notes: e You'll have to madify the first line of code in each file to match the location of
your perlbinary.

nrpe - Daemon and plugin for executing plugins on remothosts

Author: Me

Overview: Allows you to execute plugins on remote hosts in a relatively easy and transparent
manner.
Files: - Plugin used to send execution requests to the nrpe agent on the
check_nrpe
remotehost

- Agent that runs on the remote host and processes plugin

nrpe)
executiorrequests

nrpe.cfg - Configuration file for the remote hosgent

Description: This addon is designed to provide a way for exec{gingingon a remote host. The
check_nrpe plugin runs on the NetSaint host and is used to send plugin execution
requests to the nrpe agent on the remote host. The nrpe agent will then run an
appropriate plugins on the remote host and return the plugin output and return code to
the check_nrpe plugin on the NetSaint host. The check_nrpe plugin then passes the
remote plugin’s output and return code back to NetSaint as if it were its own. This
allows for a rather transparent method of executing plugins on remote hosts. The nrpe
agent can either be run as a standalone daemon or as a servidaetdder

Notes: e \When running in daemon mode, the nrpe agent authenticates plugin execution
requests by doing a rudimentary comparison of the IP address of the calling host
against a list of allowed IP addresses in the configuration file.

® \When running under inetd, TCP wrappers can be employed to restrict access to
the nrpeagent

nrpep - Service and plugin for executing plugins on remotRosts

Author: AdamJacob
Overview: Allows you to execute plugins on remote hosts in a relatively easy and transparent
manner.

Description: NetSaint Remote Plugin Executor/Perl (NRPEP) was designed as a replacemnt for the
[netsaint_stajdndnrpgaddons. Although this addon is similiar in function to nrpe, it
is written in Perl and implements TripleDES encryption for the data in transit. It is
also designed to run under inetd and make use of the TCP Wrappers package for
accesgontrol.

Notes: ® Requires two Perl module8rypt-TripleDES-0.24ndDigest-MD5-2.09

nsa- Web-based administration package foNetSaint

Author: Daniel Burke

Description: Daniel Burke has created this excellent addon - named "NetSaint Administrator"” - to
fill the need for an more user-friendly means of configuring NetSaint. This package
allows you to edit your configuration data (hosts, services, contacts, timeperiods, etc.)
via a web interface. Configuration data is stored in a MySQL database and written to
a text file in the proper configuration file format when you're ready. The CGIs can
also run NetSaint with the -v option to verify the contents of your configuration file.
This is an excellent application for anyone who either hates the native config file
format or just wants an easier interface for managing the configudztian

Notes: ® You must have MySQL v2.22.25 or higher installed, Perl5 with DBI and
MySQL DBD installed, and a general knowledge of how to create/delete
databases and tables in MySQL in order to useptiikage.

nsca- Daemon and client program for sending passive check results across tietwork

Author: Me

Overview: Allows you to submit passive service checks results to another server on the network
that is runningNetSaint.

Files: - Daemon that runs on the central NetSaint server and processes
nsca : .)
passive service check results submittedlmnts

nsca.cfg - Configuration file for the nscdaemon

- Client program that is executed from remote hosts and sends
send_nsca passive service check information to the nsca daemon on the
central NetSainserver

send_nsca.cfg - Configuration file for the send_nschent

Description: This addon allows you to sejpdssive serviceheckresults from remote hosts to a
central monitoring host that runs NetSaint. The client can be used as a standalone
program or can be integrated with remote NetSaint servers that [agsggommantl
to setup @istributedmonitoringenvironment. Communication between the client and
daemon can be encrypted via various algorithms (DES, 3DES, CAST, XTEA,
Twofish, LOKI97, RJIINDAEL, SERPENT, GOST, SAFER/SAFER+, etc.) if you
have thgmcryptlibraries installed on yowsystems.

pscwatch- Watchdog daemon that ensures passive service checks are beingmitted

http://mcrypt.hellug.gr/

Author: Me

Overview: Ensures that passive service checks are being submitted at netpulaals.

Description: This addon’s sole purpose in life is to ensure|piagsive serviceheck$are being
submitted to NetSaint on a regular basis. This addon is designed to be used on a
central monitoring server when setting ygistributedmonitoringenvironment.

saintmap - Perl/TK application that creates 2-D drawing coordinates for hosts from a drag and
drop visual interface

Author: David Kmoch
Overview: Visual interface for creating 2-D host coordinates for statuspazip

Description: This addon allows you to create 2-D host drawing coordinates for usdstatiemap
by using a drag and drop visual interface. When you finish moving the hosts into
the desired location on screen, this app allows you to save the drawing coordinates in
CGl config file’shostextinfo[] definitions. Perl and Tcl/TK are required to use this
addon.

Theory of Operation

Although the general concept of what NetSaint does is relatively easy to understand, its internal workings
can sometimes be difficult to understand. In order to help you better understand how the NetSaint code
works, I've provided some notes here. This isn’'t very extensive yet, but will be improved in later versions
once everything stabilizes a bit more and | have time to cgich

Determining Status and Reachability of NetworkHosts

Click[heréto read up on how NetSaint determines the status and reachability of networked hosts in the
process of its monitoring. This document also describes what "parent" hosts are (as dabspd in
definitions), and how they affect the way in which host reachabiligtermined.

Network Outages

Click[heréto read up on how NetSaint determines what hosts are causing outages on your network. This
mainly pertains to the way in which fhetwork outage€Gllworks, but it is still worth a quickead.

Notifications

Click[heréto read up on how service and host notifications work. It describes when and how notifications
occur, as well as the various filters that must be passed before they can actually be sent out to individual
contacts.

Service CheckScheduling

Click[heréto read up on how service checks are scheduled, and how scheduling differs from when checks
are actually executed and their respltscessed.

State Types

Click[hergto read up on what "soft" and "hard" states are, when they occur, and the importance of the role
that they play in the monitoringgic.

Time Periods

Click|[heréto read up on how the use of time periods affects service checks, service notifications, and host
notifications. This document also describes potential problems you may run into when using time periods.
If you are using time periods that don’t cover a 24 hour a day, 7 day a week span, you neettisd read

Determining Status and Reachability of NetworkHosts

Monitoring Services on Down or UnreachableHosts

The main purpose of NetSaint is to monitor services that run on or are provided by physical hosts or
devices on your network. It should be obvious that if a host or device on your network goes down, all
services that it offers will also go down with it. Similarly, if a host becomes unreachable, NetSaint will not
be able to monitor the services associated withhibstt

NetSaint recognizes this fact and attempts to check for such a scenario when there are problems with a
service. Whenever a service check results in a nofst@ikdeve] NetSaint will attempt to check and see

if the host that the service is running on is "alive". Typically this is done by pinging the host and seeing if

any response is received. If the host check commmand returns a non-OK state, NetSaint assumes that there
is a problem with the host. In this situation NetSaint will "silence" all potential alerts for services running

on the host and just notify the appropriate contacts that the host is down or unreachable. If the host check
command returns an OK state, NetSaint will recognize that the host is alive and will send out an alert for

the service that isisbehaving.

Local Hosts

"Local" hosts are hosts that reside on the same network segment as the host running NetSaint - no routers
or firewalls lay between theffigure1] shows an example network layout. Host A is running NetSaint and
monitoring all other hosts and routers depicted in the diagram. Hosts B, C, D, E and F are all considered to
be "local" hosts in relation to hoAt

The<parent_host option in thghostdefintiorjfor a "local" host should be left blank, as local hosts have
no depencies or "parents"” - that's why theyreal.

Monitoring Local Hosts

Checking hosts that are on your local network is fairly simple. Short of someone accidentally (or
intentially) unplugging the network cable from one of your hosts, there isn’'t too much that can go wrong
as far as checking network connectivity is concerned. There are no routers or external networks between
the host doing the monitoring and the other hosts on therletabrk.

If NetSaint needs to check to see if a local host is "alive" it will simply run the host check command for
that host. If the command returns an OK state, NetSaint assumes the host is up. If the command returns
any other status level, NetSaint will assume the hakivig.

Figure 1.

Example Network Layout
Last Modified 5/31/1933

Internet or WiAH

Router (Host F) Router (Host)
Host A
Hast D Host E s = = Host J
Router (Host K)
Host L Host b
RemoteHosts

"Remote" hosts are hosts that reside on a different network segment than the host running NetSaint. In the
figure above, hosts G, H, |, J, K, L and M are all considered to be "remote" hosts in relationrAto host

Notice that some hosts are "farther away" than others. Hosts H, | and J are one hop further away from host
A than host G (the router) is. From this observation we can construct a host dependency tree as show
below inFigure2 This tree diagram will help us in deciding how to configure each hotidaint.

The<parent_host>option in théhostdefintiorj for a "remote" host should be the short name of the host
directly above it in the tree diagram (as show below). For example, the parent host for host H would be
host G. The parent host for host G is host F. Host F has no parent host, since it is on the network segment
as host A - it is a "localiost.

Figure 2.

MNetwork Link Heirarchy
Last Modified 5/31,/1999

Host A))
This iz the hostwhich runs MetSaint and
maonitars all ather hosts

Host B Host © HostD HostE

Router (Host K)

s

HostH Hostl Hostd Host L Host M

Monitoring Remote Hosts

Checking the status of remote hosts is a bit more complicated that for local hosts. If NetSaint cannot
monitor services on a remote host, it needs to determine whether the remote host is down or whether it is
unreachable. Luckily, theparent_host>option allows NetSaint to diis.

If a host check command for a remote host returns a non-OK state, NetSaint will "walk" the depency tree
(as shown in the figure above) until it reaches the top (or until a parent host check results in an OK state).
By doing this, NetSaint is able to determine if a service problem is the result of a down host, an down
network link, or just a plain old servicailure.

DOWN vs. UNREACHABLE Noatification Types

| get lots of email from people asking why NetSaint is sending notifications out about hosts that are
unreachable. The answer is because you configured it to do that. If you want to disable UNREACHABLE
notifications for hosts, disable tetify _unreachabl@ption in eaclhostdefinitior} More information can

be found irkhis FAQ

Network Outages

Introduction

Theloutage<CGllwas added with release 0.0.6 to help pinpoint the cause of network outages. For small
networks this CGI may not be particularly useful, but for larger ones it will be. Pinpointing the cause of
outages will help admins to more quickly find and resolve problems which are causing the biggest impact
on thenetwork.

It should be noted that the outages CGI will not attempt to finebthetcause of the problem, but will

rather locate the hosts on your network which seem to be causing the most problems. Delving into the
problem at a deeper level is left to the user, as there are any number of things which might actually be the
cause of theroblem.

Diagrams

The diagrams below help to show how the outages CGI goes about determining the cause of network
outages. You can click on either image for a lavgesion...

Diagram 1 Diagram 2

This diagram will serve as the basis for our example. All hosts shows in red are either down or unreachable (from the view of NetSaint). All ot hosts are. “This diagram pinpoints the causes of the network outages (from the view of NetSaint), and shows various groups of hosts which are aftetaggkby the

Determining The Cause Of NetworkOutages

So how does the outages CGI determine which hosts are the source of préBladle™" hosts must be
either in a DOWN or UNREACHABLE stated at least one of their immediate parent hosts mustie
Hosts which fit this criteria are flagged as being potential problests.

In order to determine whether these flagged hosts are causing network outages, we must performs some
othertests...

If all of the immediate child hosts of one of these flagged hosts is DOWN or UNREACHAR1 fias

no immediate parent host that is up, the flagged host is the cause of a network outage. If even one of the
immediate children of a flagged host does$ pass this test, then the flagged hostasthe cause of a
networkoutage.

http://www.netsaint.org/docs/0_0_7/images/network-outage1.gif
http://www.netsaint.org/docs/0_0_7/images/network-outage2.gif

Determining The Effects Of NetworkOutages

Along with telling you what hosts are causing problem on your network, the outages CGlI will also tell you
how many hosts and services are affected by a particular problem host. How is this determined? Take a
look at diagram 2bove...

From the diagram it is clear that host 1 is blocking two child hosts (in domain A). Host 2 is solely
responsbile for blocking only itself (domain B) and host 3 is solely responsibly for blocking 7 hosts

(domain C). The outage effects of the two hosts in domain D are "shared" between hosts 2 and 3, since it
is unclear as to which host is actually the cause of the outage. If either host 2 or 3 was UP, the these hosts
might not be blocked.

The numbers of affected hosts for each problem host are as follows (the problem host is also included in
thesefigures):

® Host 1: 3 affected hosts
® Host 2: 3 affected hosts
® Host 3: 10 affectetiosts

Ranking Problems Based On Severit{.evel

The outages CGlI will display all problem hosts, whether they are causing network outages or not.
However, the CGlI will tell you how many of the problem hosts (if any) are causing netutades.

In order to display the problem hosts in a somewhat useful manner, they are sorted by the severity of the
effect they are having on the network. The severity level is determined by two things: The number of hosts
which are affected by problem host and the number of services which are affected. Hosts hold a higher
weight than services when it comes to calculating severity. The current code sets this weight ratio at 4:1
(i.e. hosts are 4 times more important than individeabices).

Assuming that all hosts in diagram 2 have an equal number of services associated with them, host 3 would
be ranked as the most severe problem, while hosts 1 and 2 would have the samédesalerity

Notifications

Introduction

I've had a lot of questions as to exactly how notifications work. This will attempt to explain exactly when
and how host and service notifications are sent out, as well as who rebeives

Index

[When do notificationgccur?
Who getsnotified?

[What filters must be passed in order for notifications tedre

[What aren’t any notification methods incorporated directly NetSaintp
[Helpful resourcds

When Do NotificationsOccur?

The decision to send out notifications is made in the service check and host check logic. Host and service
notifications occur in the followinmstances...

® \When a hard state change occurs. More information on state types and hard state changes can be
foundheré

® \When a host or service remains in a hard non-OK state and the time specified by the
<notification_intervab option in th¢hos}orfservicg¢definition has passed since the last notification
was sent out (for that specified host or service). If you don't like the idea of recurring notifications,
set the<notification_intervab value to something very high (like Béurs).

Who GetsNotified?

EacHservicedefinition has a<contactgroups option that specifies whiabntactgroup$receive

notifications for that particular service. Each contact group can contain one or more inftiviitaaths

When NetSaint sends out a service notification, it will notify each contact that is a member of any contact
groups specified in thecontactgroups option of the service definition. NetSaint realizes that any given
contact may be a member of more than one contact group, so it removes duplicate contact notifications
before it doesnything.

Eachhostmay belong to one or mdhestgroup$ Each host group has<aontact_groups option that
specifies whgtontactgroupsreceive notifications for hosts in that particular host group. When NetSaint

sends out a host natification, it will notify contacts that are members of all the contact groups that that
should be notified for any and all host groups that the host is a member of. NetSaint removes any duplicate
contacts from the notification list before it daes/thing.

What Filters Must Be Passed In Order For Notifications To BeSent?

Just because there is a need to send out a host or service notification doesn’t mean that any contacts are
going to get notified. There are several filters that potential notifications must pass before they are deemed
worthy enough to be sent out. Even then, specific contacts may not be notified if their notification filters

do not allow for the notification to be sent to them. Let’s go into the filters that have to be passed in more
detail...

Click on the
. . . image to the
Notification Filters leftfor a
graphical
representation
T T T T T Y of the filters
that must be
passed before

| Host or Service Monitoring |
Logic Determines There |s

| 4 Need To Send Out & notifications
Motification | are sent to
\ B A contacts.
[
Check Program hMode |

Program Mode Filter

Check For Scheduled
Doy ritime:

eck For State Flappin

Check Host or Service

e ot Host or Service Filters

Check Host or Service
ification Time Peti

heck Re-Motification Time If
Mecessary

heck Contact #n Service o
=t Motification Optiol

Contact Filters

Contact Receives Host or
Service Motification ia Al
Defined Motification
Commands

Program Mode Filter:

http://www.netsaint.org/docs/0_0_7/images/notification-process.gif

The first filter that notifications must pass is ffregrammodétest. If NetSaint is iISTANDBY
mode,no one getgontacted If NetSaint is inACTIVEmode, the natification gets passed to the next
filter...

Service and HosftFilters:

The first filter for host or service notifications is a check to see if the host or service is in a period of
[scheduledlowntimeg It it is in a scheduled downtimep one getshotified. If it isn’t in a period of
downtime, it gets passed on to the rfdser.

The second filter for host or service notification is a check to see if the host or seflappirg] (if
you enabled flap detection). If the service or host is currently flappaigane getsnotified.
Otherwise it gets passed to the ridir.

The third host or service filter that must be passed is the natification options. Each service definition
contains options that determine whether or not notifications can be sent out for warning states, critical
states, and recoveries. Similiarly, each host definition contains options that determine whether or not
notifications can be sent out when the host goes down, becomes unreachable, or recovers. If the host or
service notification does not pass these optinagne getsotified. If it does pass these options, the
notification gets passed to the next filtelate: Notifications about host or service recoveries are

only sent out if a notification was sent out for the original problem. It doesn’t make sense to get a recovery
notification for something you never knew wasablem...

The fourth host or service filter that must be passed is the time period test. Each host and service
definition has anotification_period option that specifies whidfime period contains valid

notification times for the host or service. If the time that the notification is being made does not fall within

a valid time range in the specified time period,one getxontacted If it falls within a valid time

range, the notification gets passed to the next filtdote: If the time period filter is not passed,

NetSaint will reschedule the next notification for the host or service (if its in a non-OK state) for the next
valid time present in the time period. This helps ensure that contacts are notified of problems as soon as
possible when the next valid time in time pedodves.

The last set of host or service filters is conditional upon two things: (1) a notification was already sent
out about a problem with the host or service at some point in the past and (2) the host or service has
remained in the same non-OK state that it was when the last notification went out. If these two criteria are
met, then NetSaint will check and make sure the time that has passed since the last notification went out
either meets or exceeds the value specified byrbéfication_intervak option in the host or service
definition. If not enough time has passed since the last notificatioone getsontacted If either

enough time has passed since the last notification or the two criteria for this filter were not met, the
notification will be sent out! Whether or not it actually is sent to individual contacts is up to another set of
filters...

Contact Filters:

At this point the notification has passed the program mode filter and all host or service filters and
NetSaint starts to notifgll the people ishould Does this mean that each contact is going to receive
the notification? No! Each contact has their own set of filters that the notification must pass before they
receive it. Note: Contact filters are specific to each contact and do not affect whether or not other contacts

receivenotifications.

The first filter that must be passed for each contact are the notification options. Each contact

definition contains options that determine whether or not service notifications can be sent out for warning
states, critical states, and recoveries. Each contact definition also contains options that determine whether
or not host notifications can be sent out when the host goes down, becomes unreachable, or recovers. If the
host or service notification does not pass these optisagontact will not benotified. If it does

pass these options, the notification gets passed to the next filte: .Notifications about host or

service recoveries are only sent out if a notification was sent out for the original problem. It doesn’t make
sense to get a recovery natification for something you never knewpralsiem...

The last filter that must be passed for each contact is the time period test. Each contact definition has
a<notification_period option that specifies whigirme periodcontains valid notification times for

the contact. If the time that the notification is being made does not fall within a valid time range in the
specified time periodhe contact will not benotified. If it falls within a valid time range, the

contact getsotified!

What Aren’t Any Notification Methods Incorporated Directly Into NetSaint?

I've gotten several questions about why naotification methods (paging, etc.) are not directly incorporated
into the NetSaint code. The answer is simple - it just doesn’t make much sense. The "core" of NetSaint is
not designed to be an all-in-one application. If service checks were embedded in NetSaint’s core it would
be very difficult for users to add new check methods, modify existing checks, etc. Notifications work in a
similiar manner. There are a thousand different ways to do notifications and there are already a lot of
packages out there that handle the dirty work, so why re-invent the wheel and limit yourself to a bike tire?
Its much easier to let an external entity (i.e. a simple script or a full-blown messaging system) do the
messy stuff. Some messaging packages that can handle notifications for pagers and cellphones are listed
below in the resourcgection.

Helpful Resources

If you're interested in sending an alphanumeric notification to your pager or cellphone via email, you may
be find the following information useful. Here are a few links to various messaging service providers’
websites that contain information on how to send alphanumeric messages to paghmaad.

® |AT&T Wireles
e [PageNdt
® [SprintPCHSMSphones)

If you're looking for an alternative to using email for sending messages to your pager or cellphone, check
out these packages. They could be used in conjuction with NetSaint to send out a notification via a modem
when a problem arises. That way you don’t have to rely on email to send notifications out (remember,
email may *not* work if there are network problems). | haven’t actually tried these packages myself, but
others have reported success usimem...

° (SMS software for contacting Nokia phones via GSM network)

e [QuickPagKalphanumeric pager software)
e [Sendpadépaging software)

http://sap.mobile.att.net/mc/email.html
http://www.pagenet.com/sendamessage/emailpage.asp
http://www.messaging.sprintpcs.com/sms_help/send_email.html
http://www.gnokii.org/
http://www.qpage.org/
http://sendpage.cpoint.net/

e |SMSClienf(command line utility for sending messages to pagers and nptigifees)

Lastly, there in an area in the contrib downloads section gRéteainthomepaggor notification scripts
that have been contributed by users. You might find these scripts useful, as they take care of a lot of the
dirty work needed to send out alphanumentfications...

http://www.styx.demon.co.uk/
http://www.netsaint.org/

Plugin Theory

Introduction

Unlike many other monitoring tools, NetSaint does not include any internal mechanisms for checking the
status of services, hosts, etc. Instead, NetSaint relies on external programs (called plugins) to do the all the
dirty work. NetSaint will execute a plugin whenever there is a need to check a service or host that is being
monitored. The plugin doe®omethingnotice the very general term) to perform the check and then simply
returns the results to NetSaint. NetSaint will process the results that it receives from the plugin and take

any necessary actions (runnjegenthandler sending oynotificationg etc).

The image below show how plugins are separated fromt the core program logic in NetSaint. NetSaint
executes the plugins which then check local or remote resources or services of some type. When the
plugins have finished checking the resource or service, they simply pass the results of the check back to
NetSaint for processing. A more complex diagram on how plugins work can be found in the
documentation opassive servicehecks

Local Resource or
Service

AsRemote Resource
or Service

Local Host Remote Host

The Upside

The good thing about the plugin architecture is that you can monitor just about anything you can think of.

If you can automate the process of checking something, you can monitor it with NetSaint. There are
already a lot of plugins that have been created in order to monitor basic resources such as processor load,
disk usage, ping rates, etc. If you want to monitor something else, take a look at the documentation on

jwriting plugingand roll your own. Itsimple!

The Downside

The only real downside to the plugin architecture is the fact that NetSaint has absolutely no idea what it is
that you're monitoring. You could be monitoring network traffic statistics, data error rates, room

temperate, CPU voltage, fan speed, processor load, disk space, or the ability of your super-fantastic toaster
to properly brown your bread in the morning... As such, NetSaint cannot produce graphs of changes to the
exact values of resources you're monitoring over time. It can only track changestamtdioé those

resources. Only the plugins themselves know exactly what they’re monitoring and how to perform

checks...

Using Plugins For ServiceChecks

The correlation between plugins and service checks should be fairly obvious. When NetSaint needs to
check the status of a particular service that you have defined, it will execute the plugin you specified in the
<check_commarndargument of thgervicedefinition The plugin will check the status of the service or
resource you specify and return the resulfsetSaint.

Using Plugins For HostChecks

Using plugins to check the status of hosts may be a bit more difficult to understand.[hostdefinitior]

you use thechost_check _commandirgument to specify a plugin that should be executed to check the
status of the host. Host checks are not performed on a regular basis - they are executed only as needed,
usually when there are problems with one or more services that are associated . the

Host checks can use the same plugins as service checks. The only real difference is the important of the
plugin results. If a plugin that is used for a host check results in a non-OK status, NetSaint will believe that
the host islown.

In most situations, you’ll want to use a plugin which checks to see if the host can be pinged, as this is the
most common method of telling whether or not a host is up. However, if you were monitoring some kind

of super-fantastic toaster, you might want to use a plugin that would check to see if the heating elements
turned on when the handle was pushed down. That would give a decent indication as to whether or not the
toaster was "alive".

ServiceCheck Scheduling

Index

[Configurationoption$

[Initial scheduling

[Inter-checkdelay

[Serviceinterleaving

[Max concurrent serviceheckk
[Normalscheduling

[Scheduling duringroblems
[Schedulingdelay$

[Schedulingexamplé

[Service definition options that affeetheduling

Introduction

I've gotten a lot of questions regarding how service checks are scheduled in certain situations, along with
how the scheduling differs from when the checks are actually executed and their results are processed. I'll
try to go into a little more detail on how this adbrks...

Configuration Options

Before we begin, there are several configuration options that affect how service checks are scheduled,
executed, and processed. For starters, [gachcedefinition] contains three options that determine when
and how each specific service check is scheduled and executed. Those threéncpiibets

® check interval
® retry interval
® check period

There are also four configuration options injth@n configuratiorfile| that affect service checks. These
include:

linter check delay method
[service interleave factor
[max concurrent chedks
[service reaper frequency

We’'ll go into more detail on how all these options affect service check scheduling as we progress. First
off, let’s see how services are initially scheduled when NetSaint first stagstarts...

Initial Scheduling

When NetSaint (re)starts, it will attempt to schedule the initial check of all services in a manner that will
minimize the load imposed on the local and remote hosts. This is done by spacing the initial service
checks out, as well as interleaving them. The spacing of service checks (also known as the inter-check
delay) is used to minimize/equalize the load on the local host running NetSaint and the interleaving is used
to minimize/equalize load imposed on remote hosts. Both the inter-check delay and interleave functions
are discussebelow.

Even though service checks are initially scheduled to balance the load on both the local and remote hosts,
things will eventually give in to the ensuing chaos and be a bit random. Reasons for this include the fact

that services are not all checked at the same interval, some services take longer to execute than others, host
and/or service problems can alter the timing of one or more service checks, etc. At least we try to get

things off to a good start. Hopefully the initial scheduling will keep the load on the local and remote hosts
fairly balanced as time goés...

Note: If you want to view the initial service check scheduling information, start NetSaint usirgy the
command line option. Doing so will display basic scheduling information (inter-check delay, interleave
factor, first and last service check time, etc) and will create a new status log that shows the exact time that
all services are initially scheduled. Because this option will overwrite the status log, you should not use it
when another copy of NetSaint is running. NetSaint doéstart monitoring anything when this

argument isised.

Inter-Check Delay

As mentioned before, NetSaint attempts to equalize the load placed on the machine that is running
NetSaint by equally spacing out initial service checks. The spacing between consecutive service checks is
called the inter-check delay. By giving a value tqjttier check delay methpaériable in the main

config file, you can modify how this delay is calculated. | will discuss how the "smart" calculation works,

as this is the setting you will want to use for noroyration.

When using the "smart" setting of timer_check_delay_ metha@riable, NetSaint will calculate an
inter-check delay value by using the followicgculation:

inter-check delay = (total normal check interval for all services) / (total numbserefcesf

Let’s take an example. Say you have 1,000 services that each have a normal check interval of 5 minutes
(obviously some services are going to be checked at different intervals, but let’s look at an easy case...).
The total check interal time for all services is 5,000 (1,000 * 5). That means that the average check

interval for each service is 5 minutes (5,000 / 1,000). Give that information, we realize that (on average)
we need to re-check 1,000 services every 5 minutes. This means that we should use an inter-check delay
of 0.005 minutes (0.3 seconds) when spacing out the initial service checks. By spacing each service check
out by 0.3 seconds, we can somewhat guarantee that NetSaint is scheduling and/or executing 3 new
service checks every second. By spacing the checks out evenly over time like this, we can hope that the
load on the local server that is running NetSaint remains soméafaaiced.

The following two images show some output from the status CGl after NetSaint has been started and
demonstrate how the inter-check delay works. For these examples, the inter-check delay was
approximately 2.3 seconds (there were a total of 113 services with an average check interval of about 4.3
minutes). The first image shows the inital scheduling of service checks and the second image shows how
NetSaint executes service checks [tierleave factgoption was set to 1 for this example, so checks are

not interleaved). Click on either image for a largersion.

Image L. Iniil scheduling of service checison-interleaved) Image2. Non-interleaved execution ohecks

iiost JServiee L [Stas_ [Lase Updated__Jacenye o | [Status____[Last Updated
A e EENDING A [Servi oK

ozt ot Toe M 2251651 00 clget e oo Mar 2092652057 200

coeans 0 BENDING WA o duled for Tue Mar 280016532000 cof 40542000 % Tue Mas 22 0926:54 CST 2000 15 Printer ok - CREADY")

ol PENDING WA %3 doled for Tuo Mas 280016552000 coydl5d 3 Tue Mo 28.0926:36 CST 2000 13 Printo ok- CO0READY")

cofe 75 PENDING WA o

PENDING WA %3

Tue Mo 26 092659 CST 2000 1
WARNING TueMor28 192701 CST 2000 1

e for Tus Mas 2809.16 582000 cofy75-4d
echaduled For Tue Mas 28 094700 2000

BENDING WA o doled for Tue Mar 280047022000 dhese WARNING TueMar2$ 192703 CST 2000 1

PENDING WA %3 ol for Tuo Mas 280947052000 e oK Tue Mac 26 0927.06 CST 2000 1

BENDING WA [dled for Tue Mar 280947072000 devone 3 Tue Mo 25092708 CST 2000 1

ERNDING WA o Mu 220217092000 seeds
Mo 28 09:17:12 2000

BENDING WA
PENDING. A
PENDING A
PENDING. A
PENDING A
PENDING. A
PENDING A
PENDING. A
PENDING A
BENDING. A
PENDING A
BENDING. A
PENDING A
BENDING. A
PENDING A

EENDING
PENDING WA o
EENDING

PENDING WA I

EENDING
PENDING WA o

EENDING
PENDING WA o
Cannestions EENDING

SYS Uolune PENDING WA o

DX Volune EENDING
INSTALL Velune PENDING WA o ol for T Was 28.09:7.37 2000
dled for Tue Mar 28 09170 2000

USER Volune. EENDING
SMp PENDING WA o ‘Service check sch duled for Tue Mlas 28 09:7:42 2000

S8885585558858888 8

Servicelnterleaving

As discussed above, the inter-check delay helps to equalize the load that NetSaint imposes on the local
host. What about remote hosts? Is it necessary to equalize load on remote hosts? Why? Yes, it is important
and yes, NetSaint can help out with this. Equalizing load on remote hosts is especially important with the
advent ofservice checlarallelizatiop If you monitor a large number of services on a remote host and the
checks were not spread out, the remote host might think that it was the victim of a SYN attack if there

were a lot of open connections on the same port. Plus, attempting to equalize the load on hosts is just a
nice thing tado...

By giving a value to thigervice Interleave faclmariable in the main config file, you can modify how the
interleave factor is calculated. | will discuss how the "smart" calculation works, as this will probably be
the setting you will want to use for normal operation. You can, however, use a pre-set interleave factor
instead of having NetSaint calculate one for you. Also of note, if you use an interleave factor of 1, service
check interleaving is basicaltlisabled.

When using the "smart” setting of thervice_interleave_factarariable, NetSaint will calculate an
interleave factor by using the followiroglculation:

interleave factor = ceil (total number of services / total number of hosts

Let's take an example. Say you have a total of 1,000 services and 150 hosts that you monitor. NetSaint
would calculate the interleave factor to be 7. This means that when NetSaint schedules initial service
checks it will schedule the first one it finds, skip the next 6, schedule the next one, and so on... This
process will keep repeating until all service checks have been scheduled. Since services are sorted (and
thus scheduled) by the name of the host they are associated with, this will help with minimizing/equalizing
the load placed upon remdiests.

http://www.netsaint.org/docs/0_0_7/images/noninterleaved1.gif
http://www.netsaint.org/docs/0_0_7/images/noninterleaved2.gif

The following two images show some output from the status CGl after NetSaint has been started and
demonstrate how the interleaving works. For these examples, the inter-check delay was approximately 2.3
seconds and the interleave factor was 5 (there were a total of 113 services and 28 hosts). The first image
shows the inital scheduling of service checks with interleaving and the second image shows how NetSaint
executes service checks. Notice the differences between these two images and images 1 and 2 above.
Click on either image for a largeersion.

Image3. Iniial scheduling of service checksterieaved) Image 4. Interleaved execution ahecks

iost Jserviee [stats__[Last Updated Jauenpt___[Service Information ifost Service . fStaws [LastUpdated fAcenye
A BENDING WA Servi A mia 3 13

closet Ak scheduled for Tue Mar2809.1451 2000 clasel Tue Mo 25094330 CST 2000

comans om0 BENDING WA duled or Tue Mar 20915442000 cofnd05.44000 BENDING. WA

8 8

PENDING A

sofhdisga ik schedlad for Tue Mur 2096382000 cofadl S0

PENDING A
PENDING A

coled75n K schedlod for Tue MuZ8 091731 2000 cofb/s i

ik schdld for Tue Mar 2809:1825 2000

5 88

dbaze

ik scheduld for Tus Mar 2 0914532000 dbase oK Tue Mar 28021332 65T 2000

E

g

3

z

B
BEEEIFEE

i

ey dulod or Tue MuZ8 0915472000 de PENDING. A

=
5
8

devone PENDING. A

Ma2B017342000 ceds
Mar28 091827 2000
Mer 28 09:1455 2000

BENDING. A
PENDING WA
oK Tue Miar 28094334 CST 2000

soeds

BENDING WA
PENDING A
A

Mar28 091458 2000
Mer2809:1551 2000
Mar28 091645 2000
Mer 28091738 2000
Mer28 091832 2000
e For Tue Mer 28 091500 2000 oK
vl for Tue Mar 28 0915:54 2000 USER Volune PENDING. s
Servics check schduled for Tue Mar 2809:16:4 2000) PENDING. A

oK Tue Mo 25091337 CST 2000

PENDING. A
PENDING A
PENDING. A

Tue Mo 26 091330 CST 2000

i For Tue Mar 28 09:1433 2000
Servize check schedled for Tue Mar 28 09:1526 2000

=

B
5555558588888 5

E

=

&
8855555585888588 § §

Maximum Concurrent Service Checks

In order to prevent NetSaint from consuming all of your CPU resources, you can restrict the maximum
number of concurrent service checks that can be running at any given time. This is controlled by using the
[max_concurrent_chedksption in the main confifjle.

The good thing about this setting is that you can regulate NetSaint’'s CPU usage. The down side is that
service checks may fall behind if this value is set too low. When it comes time to execute a service check,
NetSaint will make sure that no more theservice checks are either being executed or waiting to have

their results processed (wheres the number of checks you specified foriex_concurrent_checks

option). If that limit has been reached, NetSaint will postpone the execution of any pending checks until
some of the previous checks have completed. So how does one determine a reasonable value for the
max_concurrent_checkgption?

First off, you need to know the followirthings...

e The inter-check delay that NetSaint uses to initially schedule service checks (1sseothenand line
argument to check this)

® The frequency (in seconds) of service reaper events, as specifiedseyvice reaper_frequency
variable in the main config file.

® A general idea of the average time that service checks actually take to execute (most plugins timeout
after 10 seconds, so the average is probably goinglawiee)

Next, use the following calculation to determine a reasonable value for the maximum number of
concurrent checks that amflowed...

max. concurrent checks = ceil(max(service reaper frequency , average check execution time) /
inter-check delay

http://www.netsaint.org/docs/0_0_7/images/interleaved1.gif
http://www.netsaint.org/docs/0_0_7/images/interleaved2.gif

The calculated number should provide a reasonable starting point foah€oncurrent_checksriable.
You may have to increase this value a bit if service checks are still falling behind schedule or decrease it if
NetSaint is hogging too much CRithe.

Let's say you are monitoring 875 services, each with an average check interval of 2 minutes. That means
that your inter-check delay is going to be 0.137 seconds. If you set the service reaper frequency to be 10
seconds, you can calculate a rough value for the max. number of concurrent checks as follows (I'll assume
that the average execution time for service checks is less than 10 seconds)

max. concurrent checks = ceil(10 / 0.137

In this case, the calculated value is going to be 73. This makes sense because (on average) NetSaint are
going to be executing just over 7 new service checks per second and it only processes service check results
every 10 seconds. That means at given time there will be a just over 70 service checks that are either being
executed or waiting to have their results processed. In this case, | would probably recommend bumping

the max. concurrent checks value up to 80, since there will be delays when NetSaint processes service
check results and does its other work. Obviously, you're going to have test and tweak things a bit to get
everything running smoothly on your system, but hopefully this provided some ggmeedines...

Time Restraints

Thecheck_periodption determines tHame periodduring which NetSaint can run checks of the service.
Regardless of what status a particular service is in, if the time that it is actually executed is not a vaid time
within the time period that has been specified, the checlutilbe executed. Instead, NetSaint will
reschedule the service check for the next valid time in the time period. If the check can be run (e.g. the
time is valid within the time period), the service cheakiscuted.

Note: Even though a service check may not be able to be executed at a given time, NetSaint may still
scheduldt to be run at that time. This is most likely to happen during the initial scheduling of services,
although it may happen in other instances as well. Thismesean that NetSaint will execute the

check! When it comes time to actuadlyecutea service check, NetSaint will verify that the check can be
run at the current time. If it cannot, NetSaint will not execute the service check, but will instead just
reschedule it for a later time. Don't let this one throw you confuse you! The scheduling and execution of
service checks are two distinctly different (although relatsdys.

Normal Scheduling

In an ideal world you wouldn’t have network problems. But if that were the case, you wouldn’t need a
network monitoring tool. Anyway, when things are running smoothly and a service is in an OK state, we’ll
call that "normal”. Service checks are normally scheduled at the frequency specifiedgcthenterval
option. That's it. Simplehuh?

Scheduling During Problems

So what happens when there are problems with a service? Well, one of the things that happens is the
service check scheduling changes. If you've configuredndne attemptsption of the service definition

to be something greater than 1, NetSaint will recheck the service before deciding that a real problem
exists. While the service is being rechecked (upaa_attemptimes) it is considered to be in a "soft"

state (as describffbrd and the service checks are rescheduled at a frequency determined by the
retry_intervaloption.

If NetSaint rechecks the servioex_attemptimes and it is still in a non-OK state, NetSaint will put the
service into a "hard" state, send out notifications to contacts (if applicable), and start rescheduling future
checks of the service at a frequency determined bghbek_intervabption.

As always, there are exceptions to the rules. When a service check results in a non-OK state, NetSaint will
check the host that the service is associated with to determine whether or not is up (sefpéleviate

info on how this is done). If the host is not up (i.e. it is either down or unreachable), NetSaint will
immediately put the service into a hard non-OK state and it will reset the current attempt number to 1.
Since the service is in a hard non-OK state, the service check will be rescheduled at the normal frequency
specified by theheck_intervabption instead of theetry_intervaloption.

Host Checks

Unlike service checks, host checks mo¢scheduled on a regular basis. Instead they are run on demand,
as NetSaint sees a need. This is a common question asked by users, so it neddsfiede

One instance where NetSaint checks the status of a host is when a service check results in a non-OK
status. NetSaint checks the host to decide whether or not the host is up, down, or unreachable. If the first
host check returns a non-OK state, NetSaint will keep pounding out checks of the host until either (a) the
maximum number of host checks (specified byrttax_attemptsption in thdhostdefinitior)) is reached

or (b) a host check results in an Gtate.

Also of note - when NetSaint is check the status of a host, it holds off on doing anything else (executing
new service checks, processing other service check results, etc). This can slow things down a bit and cause
pending service checks to be delayed for a while, but it is necessary to determine the status of the host
before NetSaint can take any further action on the service(s) that are piabiems.

SchedulingDelays

It should be noted that service check scheduling and execution is done on a best effort basis. Individual
service checks are considered to be low priority events in NetSaint, so they can get delayed if high priority
events need to be executed. Examples of high priority events include log file rotations, external command
checks, and service reaper events. Additionally, host checks will slow down the execution and processing
of service checks.

SchedulingExample

The scheduling of service checks, their execution, and the processing of their results can be a bit difficult
to understand, so let’s look at a simple example. Look at the diagram below - I'll refer to it as | explain
how things ar@lone.

Image5.
Service Check Timing

X Xy

X

3 5 Legend:

1 X = Service reaper event
L A = Scheduled time for service check
| B = Actual time for service check

E C = Service check completion

» D = Check resufts processed

e E = Mext scheduled service check
check _interval

Time =

'|'_|
[[
L L
| |
C D

PR
mb— - -

First off, theX, events are service reaper events that are scheduled at a frequency specified by the
[service_reaper_frequenoyption in the main config file. Service reaper events do the work of gathering
and processing service check results. They serve as the core logic for NetSaint, kicking off host checks,
event handlers and notificationsraecessary.

For the example here, a service has been scheduled to be executedationever, NetSaint got
behind in its event queue, so the check was not actually executed unBl.firhe service check finished
executing at tim&, so the difference between poiisandB is the actual amount of time that the check
wasrunning.

The results of the service check are not processed immediately after the check is done executing. Instead,
the results are saved for later processing by a service reaper event. The next service reaper event occurs at
timeD, so that is approximately the time that the results are processed (the actual time may be [ter than
since other service check results may be processed befooadhis

At the time that the service reaper event processes the service check results, it will reschedule the next
service check and place it into NetSaint’s event queue. We'll assume that the service check resulted in an
OK status, so the next check at tiliés scheduled after the originally scheduled check time by a length of
time specified by theheck_intervabption. Note that the servicerist rescheduled based off the time that

it was actually executed! There is one exception to this (isn’t there always?) - if the time that the service
check is actually executed (poB} occurs after the next service check time (pBntNetSaint will

compensate by adjusting the next check time. This is done to ensure that NetSaint doesn’t go nuts trying to
keep up with service checks if it comes under heavy load. Besides, what'’s the point of scheduling
something in thgast...?

Service Definition Options That AffectScheduling

Eachservicedefinition contains aheck_intervahndretry_intervaloption. Hopefully this will clarify
what these two options do, how they relate tontlag_attemptsption in the service definition, and how
they affect the scheduling of tervice.

First off, thecheck_intervabption is the interval at which the service is checked under "normal”
circumstances. "Normal" circumstances mean whenever the service is in an OK state or whérarg in a
non-OKstate.

When a service first changes from an OK state to a non-OK state, NetSaint gives you the ability to
temporarily slow down or speed up the interval at which subsequent checks of that service will occur.
When the service first changes state, NetSaint will perform opato attemptd retries of the service

check before it decides its a real problem. While the service is being retried, it is scheduled according to
theretry_intervaloption, which might be faster or slower than the norchatk_intervabption. While

the service is being rechecked (uprtax_attemptd times), the service is irfsaft stat¢ If the service is
recheckednax_attemptd times and it is still in a non-OK state, the service turns ijh@radstat¢and is
subsequently rescheduled at the normal rate specified loh¢lo&_intervabption.

On a side note, it you specify a value of 1 forriex_attemptsption, the service will not ever be
checked at the interval specified by tie&y_intervaloption. Instead, it immediately turns intphardstate
and is subsequently rescheduled at the rate specified bige¢bk_intervabption.

State Types

Introduction

The current state of services and hosts is determined by two compondstatuhef the service or host

and thetypeof state it is in. There are two state types in NetSaint - "soft" states and "hard" states. State
types are a crucial part of NetSaint's monitoring logic. They are used to determinewenémandlers

are executed and when notifications are sent

Service and Host CheclRetries

In order to prevent false alarms, NetSaint allows you to define how many times a service or host check
will be retried before the service or host is considered to have a real problem. The maximum number of
retries before a service or host check is considered to have a real problem is controlled by the
<max_attempts option in thgservicgandhosidefinitions, respectively. Depending on what attempt a
service or host check is currently on determines what type of state it is is. There are a few exceptions to
this in the service monitoring logic, but we’'ll ignore those for now. Let's take a look at the different
service stateypes...

Soft States
Soft states occur for services and hosts in the followitgtions...

e When a service or host check results in a norjs@#@and it has not yet been (re)checked the
number of times specified by tkenax_attempts option in the service or host definition. Let’s call
this a soft error state...

® \When a service or host recovers from a soft error state. This is considered to becgefy.

Soft StateEvents

What happens when a service or host is in a soft error state or experiencesageft/?

® The soft error or recovery is logged if you enableddleservice retrigsrllog _host retrigeptions
in the main configuration file.

e |[Eventhandlergare executed (if you defined any) to handle the soft error or recovery for the service or
host. (Before any event handler is executed$SIEATETYPES[macrdis set td' SOFT").

® NetSaint doesot send out notifications to any contacts because there is (or was) no "real" problem
with the service or host.

As can be seen, the only important thing that really happens during a soft state is the execution of event
handlers. Using event handlers can be particularly useful if you want to try and proactively fix a problem
before it turns into a hard state. More information on event handlers can bfn&énd

Hard States

Hard states occur faervicedn the following situations (hard host states are discussed...

e When a service check results in a non{@#i¢and it has been (re)checked the number of times
specified by thecmax_attempts option in the service definition. This is a hard error state.

® \When a service recovers from a hard error state. This is considered to be a hard recovery.

® \When a service check results in a non-OK state and its corresponding host is either DOWN or
UNREACHABLE. This is an exception to the general monitoring logic, but makes perfect sense. If
the host isn't up why should we try and recheckstheice?

Hard states occur fdrostsin the followingsituations...

e When a host check results in a non-{giEt¢and it has been (re)checked the number of times
specified by thecmax_attempts option in the host definition. This is a hard error state.
® \When a host recovers from a hard error state. This is considered to beechaedy.

Hard State Changes

Before | discuss what happens when a host or service is in a hard state, you need to know about hard state
changes. Hard state changes occur when a serviesor.

e changes from a hard OK state to a hard non-OK state

® changes from a hard non-OK state to a hard OK-state

® changes from a hard non-OK state of some kind to a hard non-OK state of another kind (i.e. from a
hard WARNING state to a hard UNKNOW4{ate)

Hard State Events

What happens when a service or host is in a hard error state or experiences a hard recovery? Well, that
depends on whether or not a hard state change (as described aboeelrasl.

If a hard state change has occumedthe service or host is in a non-OK state the following things will
occur..

e The hard service or host problem is logged.

e |[Eventhandlergare executed (if you defined any) to handle the hard problem for the service or host.
(Before any event handler is executed, 888 ATETYPES$[macrdis set td’'HARD").

e Contacts will be notified of the service or host problem (ifrtbgficationlogid allowsit).

If a hard state change has occuedthe service or host is in an OK state the following things will
occur..

e The hard service or host recovery is logged.

e |Eventhandlergare executed (if you defined any) to handle the hard recovery for the service or host.
(Before any event handler is executed, 888 ATETYPES$[macrdis set td’'HARD").
e Contacts will be notified of the service or host recovery (ifnibtgicationlogid allowsit).

If a hard state change has NOT occuardthe service or host is in a non-OK state the following things
will occur..

e Contacts will be re-notified of the service or host problem (ifnibteficationlogid allowsit).

If a hard state change has NOT occuardthe service or host is in an OK state nothing happens. This is
because the service or host is in an OK state and was the last time it was cheeked as

Time Periods

or...
"Is This a Good Time?"

Introduction

With the release 0.0.4 the notion of time periods was introduced. Time periods allow you to have greater
control over when service checks may be run, when host and service notifications may be sent out, and
when contacts may receive notifications. With this newly added power come some potential problems, as |
will describe later. | was initially very hesitant to introduce time periods because of these snafus. I'll leave
it up to you to decide what it right for your particusituation...

How Time Periods Work With ServiceChecks

Previous to release 0.0.4, NetSaint would monitor all services that you had defined 24 hours a day, 7 days
a week. While this is fine for most services that need monitoring, it doesn’t work out so well for others.

For instance, do you really need to monitor printers all the time when they’re really only used during
normal business hours? Perhaps you have development servers which you would prefer to have up, but
aren’t "mission critical” and therefore don’t have to be monitored for problems over the weekend. Time
period definitions now allow you to have more control over when such services rolagdied...

The<check_period argument of eadbervicedefinitior] allows you to specify a time period that tells

NetSaint when the service can be checked. When NetSaint attempts to reschedule a service check, it will
make sure that the next check falls within a valid time range within the dighmederiod If it doesn't,

NetSaint will adjust the next service check time to coincide with the next "valid" time in the specified time
period. This means that the service may not get checked again for another hour, day, ecweek,

Potential Problems With ServiceChecks

If you use time periods which do not cover a 24x7 rangewjibuiun into problems, especially if a
service (or its corresponding host) is down when the check is delayed until the next valid time in the time
period. Here are some of thqe®blems...

1. Contacts will not get re-notified of problems with a service until the next service check can be run.

2. If a service recovers during a time that has been excluded from the check period, contacts will not be
notified of the recovery.

3. The status of the service will appear unchanged (in the status log and CGI) until it can be checked
next.

4. If all services associated with a particular host are on the same check time period, host problems or
recoveries will not be recognized until one of the services can be checked (and therefore notifications
may be delayed or not get sent oual§t

Limiting the service check period to anything other than a 24 hour a day, 7 days a week basis can cause a
lot of problems. Well, not really problems so much as annoyances and inaccuracies... Unless you have
good reason to do so, | wowdtronglysuggest that you set theheck periog argument of each service
definition to a "24x7" type of timperiod.

How Time Periods Work With Contact Notifications

Probably the best use of time periods is to control when notifications can be sent out to contacts. By using
the<svc_notification_period and<host_notification_period arguments ifgontactdefinitiong you're

able to essentially define an "on call" period for each contact. Note that you can specify different time
periods for host and service notifications. This is helpful if you want host notifications to go out to the
contact any day of the week, but only have service notifications get sent to the contact on weekdays. It
should be noted that these two notification periods should emygime that the contact can be notified.

You can control notification times for specific services and hosts on a one-by-one haléisvas.

By setting the<notification_perio¢ argument of thfpostdefinitior] you can control when NetSaint is
allowed to send notifications out regarding problems or recoveries for that host. When a host notification
is about to get sent out, NetSaint will make sure that the current time is within a valid range in the
<notification_period time period. If it is a valid time, then NetSaint will attempt to notify each contact of
the host problem. Some contacts may not receive the host notification #hbetr notification_perioe

does not allow for host notifications at that time. If the timmoissalid within the<notification_perioc

defined for the host, NetSaint will not send the notification oangocontacts. A diagram outlining the

basic decisions NetSaint makes when sending out host notifications can bfadodind

You can control notification times for services in a similiar manner to host notification times. By setting
the<notification_period argument of thgervicedefinitior} you can control when NetSaint is allowed to
send notifications out regarding problems or recoveries for that service. When a service naotification is
about to get sent out, NetSaint will make sure that the current time is within a valid range in the
<notification_period time period. If it is a valid time, then NetSaint will attempt to notify each contact of
the service problem. Some contacts may not receive the service notification if their
<svc_notification_period does not allow for service notifications at that time. If the timmoivalid

within the<notification_perioc defined for the service, NetSaint will not send the notification cahyo
contacts. A diagram outlining the basic decisions NetSaint makes when sending out service notifications

can be founfheré

Potential Problems With ContactNotifications

There aren’t really any major problems that you'll run into with using time periods to create custom
contact notification times. You do, however, need to be aware that contacts may not always be notified of
a service or host problem or recovery. If the time isn’t right for both the host or service notification period
and the contact notification period, the naotification won’t go through. Once you weigh the potential
problems of time-restricted notifications against your needs, you should be able to come up with a
configuration that works well for yowituation.

Conclusion

Time periods allow you to have greater control of how NetSaint performs its monitoring and notification
functions, but can lead to problems. If you are unsure of what type of time periods to implement, or if you
are having problems with your current implementation, | would suggest using "24x7" time periods (where
all times are valid for each day of the week). Feel free to contact me if you have questions or are running
into problems.

http://www.netsaint.org/docs/0_0_7/images/notification-process.gif
http://www.netsaint.org/docs/0_0_7/images/notification-process.gif

Event Handlers

Introduction

Event handlers are optional commands that are executed whenever a host or service state change occurs.
An obvious use for event handlers (especially with services) is the ability for NetSaint to proactively fix
problems before anyone is notified. Another use for event handlers is to log service or host events to an
externaldatabase.

Event Handler Types

There are two main types of event handlers than can be defined - service event handlers and host event
handlers. Event handler commands are (optionally) defined irhesthndservicg¢definition. Because

these event handlers are only associated with particular services or hosts, | will call these "local" event
handlers. If a local event handler has been defined for a service or host, it will be executed when that host
or service changesate.

You may also specify global event handlers that should be r@véoyhost or service state change by
using theglobal host event handlandglobal service event handieptions in your main

configuration file. Global event handlers are run immedigigty to running a local service or host event
handler.

When Are Event Handler CommandsExecuted?

Service and host event handler commands are executed when a semoste or

® isin a "soft" error state
® initially goes into a "hard" error state
® recovers from a "soft" or "hard" erretate

What are "soft" and "hard" states you ask? They are desfirdred

Event Handler ExecutionOrder

Global event handlers are executed before any local event handlers that you have configured for specific
hosts or services.

Writing Event Handler Commands

In most cases, event handler commands will be shell or perl scripts. At a minimum, the scripts should take

the followingmacrogasarguments:

Service event handler macr&SERVICESTATES, $STATETYPES$, $SERVICEATTEMPTS$
Host event handler macrdHOSTSTATES, $STATETYPES$, SHOSTATTEMPTS

The scripts should examine the values of the arguments passed in and take any necessary action based
upon those values. The best way to understand how event handlers should work is to see and example.
Lucky for you, one is providgdelow There are also some sample event handler scripts included in the
eventhandlers/subdirectory of the NetSaint distribution. Some of these sample scripts demonstrate the
use ofexternalcommanddo implemenfedundant monitoringost$

Permissions For Event HandlertCommands

Any event handler commands you configure will execute with the same permissions as the user under
which NetSaint is running on your machine. This presents a problem with scripts that attempt to restart
system services, as root privileges are generally required to do these sorts of tasks.

Ideally you should evaluate the types of event handlers you will be implementing and grant just enough
permissions to the NetSaint user for executing the necessary system commands. I'll leave the details of
how to do that up tgou...

Debugging Event HandlerCommands

When you are debugging event handler commands, | would highly recommend that you enable logging of
serviceretrieghostretrieg andevent handlecommandsAll of these logging options are configured in
thejmain configuratioriile] Enabling logging for these options will allow you to see exactly when and

why event handler commands are betgcuted.

When you're done debugging your event handler commands you'll probably want to disable logging of
service and host retries. They can fill up your log file fast, but if you have efiagledatiodyou might
notcare.

Service Event HandlerExample

The example below assumes that you are monitoring the HTTP server on the local machine and have
specifiedrestart-httpd as the event handler command for the HfE€R/icedefinitior} Also, | will be

assuming that you have set the <max_attempts> option for the service to be a value of 4 or greater (i.e. the
service is checked 4 times before it is considered to have progéém).

First off, we must define the event handler Notice the macros that | am passing to the event
handler command - these amgportant!

command[restart-httpd]=/usr/local/netsaint/restart-httpd $SERVICESTATES$ $STATETYPES$
$SERVICEATTEMPTS

Now, let's actually write the event handler script (this is/tlsee/local/netsaint/restart-httpd file).

#1/bin/sh

#

Event handler script for restarting the web server on the local machine
#

Note: This script will only restart the web server if the service is

retried 3 times (in a "soft" state) or if the web service somehow

manages to fall into a "hard" error state.

#

What state is the HTTP service in?

case "$1"in

OK)

The service just came back up, so don’t do anything...

WARNING)
We don't really care about warning states, since the service is probably still running...

UNKNOWN)
We don’t know what might be causing an unknown error, so don’t do anything...

CRITICAL)
Aha! The HTTP service appears to have a problem - perhaps we should restart the server...

|s this a "soft" or a "hard" state?
case "$2"in

We're in a "soft" state, meaning that NetSaint is in the middle of retrying the
check before it turns into a "hard" state and contacts get notified...
SOFT)

What check attempt are we on? We don’t want to restart the web server on the first
check, because it may just be a fluke!
case "$3"in

Wait until the check has been tried 3 times before restarting the web server.
If the check fails on the 4th time (after we restart the web server), the state
type will turn to "hard" and contacts will be notified of the problem.

Hopefully this will restart the web server successfully, so the 4th check will
result in a "soft" recovery. If that happens no one gets notified because we
fixed the problem!

3)

echo -n "Restarting HTTP service (3rd soft critical state)..."

Call the init script to restart the HTTPD server

letc/re.d/init.d/httpd restart

esac

"

The HTTP service somehow managed to turn into a hard error without getting fixed.
It should have been restarted by the code above, but for some reason it didn't.
Let’s give it one last try, shall we?

Note: Contacts have already been notified of a problem with the service at this
point (unless you disabled notifications for this service)

HARD)

echo -n "Restarting HTTP service..."

Call the init script to restart the HTTPD server

[etc/rc.d/init.d/httpd restart

esac

esac

exit 0

The sample script provided above will attempt to restart the web server on the local machine in two
different instances - after the HTTP service is being retried for the 3rd time (in an "soft" error state) and
after the service falls into a "hard" state. The "hard" state situation shouldn’t really occur, since the script
should restart the service when its still in a "soft" state (i.e. the 3rd check retry), but its left as a fallback
anyway.

It should be noted that the service event handler will only be execute the first time that the service falls

into a "hard" state. This will prevent NetSaint from continuously executing the script to restart the web
server when it is in a "hardtate.

External Commands

Introduction

NetSaint can process commands from external applications (including CGls -|[semthandCG|| for an
example) and alter various aspects of its monitoring functions based on the commeredgdas.

Enabling External Commands

By default, NetSaint does not check for or process any external commands. If you want to enable external
command processing, you'll have to do fbikowing...

® Enable external command checking with{theck external commandsgtion
® Set the frequency of command checks withakamand check interyabtion

e Specify the location of the command file with [f@nmand_filkoption

Note: If external applications or CGls will be issuing commands to NetSaint, you will have to grant the
user that those processes run as permission to write to the command file. An outline of how to configure
proper permissions for the command file can be ffherd

When Does NetSaint Check For ExternaCommands?

® At regular intervals specified by tgemmand _check _interyaption in the main configuration file

o Immediately afteeventhandlergare executed. This is in addtion to the regular cycle of external
command checks and is done to provide immediate action if an event handler submits commands to
NetSaint.

Using External Commands

External commands can be used to accomplish a variety of things while NetSaint is running. Example of
what can be done include changprggrammodes temporarily disabling notifications for services and

hosts, temporarily disabling service checks, forcing immediate service checks, adding comments to hosts
and services, etc.

External Command Examples

Some example scripts that can be used to issue commands to NetSaint can be fowewvinirthrdlers/
subdirectory of the NetSaint distribution. You may have to modify the scripts to accomodate for
differences in system command syntaxes, file and directory locatians,

Command Format

External commands that are written to have the followindgormat...

[time] command_id;command_arguments

...wheretimeis the time (irtime_tformat) that the external application or CGI committed the external
command to the command file. The various commands that are available, along witbrtireand_id
and a description of thebtommand_argumentsan be found in the tabielow.

Implemented Commands

This is a description of the external commands which have been implemented in NetSaint thus far. More
commands will be added in future releases. Note that all time arguments should be spéiifeed in
format (seconds since the UNBpoch).

Command ID Command Arguments Command Description

ADD_HOST_COMMENT <host_name>;<persistent>;<author>;<comment> This command is used to associate a comment
with the specified host. Theuthorargument
generally contains the name of the person who
entered the comment. The actual comment
should not contain any semi-colons. The
persistent flag determines whether or not thg
comment will survive program restarts (1=sajve
comment across program restarts, O=delete
comment omestart).

ADD_SVC_COMMENT <host_name>;<service_description>;<persistent>;<author>;<comméifis command is used to associate a comme¢nt
with the specified host. Note that both the hgst
name and service description are required. TThe
authorargument generally contains the nam¢ of
the person who entered the comment. The
actual comment should not contain any
semi-colons. The persistent flag determines
whether or not the comment will survive
program restarts (1=save comment across
program restarts, O=delete commentestart).

DEL_HOST_COMMENT <comment_id> This is used to delete a comment having a Ip
matchingcomment_idor the specifiedhost.
DEL_ALL_HOST_COMMENTS <host_name> This is used to delete all comments associatpd

with the specifiedhost.

DEL_SVC_COMMENT <comment_id> This is used to delete a comment having a I
matchingcomment_idor the specifiegervice.

DEL_ALL_SVC_COMMENTS <host_name>;<service_description> This is used to delete all comments associatpd
with the specified service. Note that both the]
host name and service description reguired.

DELAY_HOST_NOTIFICATION <host_name>;<next_notification_time> This will delay the next notification about thig
host until the time specified by the
next_notification_timeargument. This will
have no effect if the host state changes befg
the next notification is scheduled to be seut

@

DELAY_SVC_NOTIFICATION <host_name>;<service_description>;<next_notification_time> This will delay the next notification about thig
service until the time specified by the
next_notification_timeargument. Note that
both the host name and service description gre
required. This will have no effect if the servige
state changes before the next notification is
scheduled to be sent out. Thisesnotdelay
notifications about thiost.

SCHEDULE_SVC_CHECK <host_name>;<service_description>;<next_check_time> This will reschedule the next check of the
specified service for the time specified by thq
next_check_timargument. Note that both thel
host name and service description @guired.

SCHEDULE_HOST_SVC_CHECKS <host_name><next_check_time> This will reschedule the next check of all
services on the specified host for the time
specified by theext_check_timargument.

ENABLE_SVC_CHECK <host_name>;<service_description> This will re-enable checks of the specified
service. Note that both the host name and
service description amequired.

DISABLE_SVC_CHECK <host_name>;<service_description> This will temporarily disable checks of the
specified service. Service checks are
automatically re-enabled when NetSaint
restarts. Issuing this command will have the
side effect of temporarily preventing
notifications from being sent out for the
service. Itdoesnot prevent notifications about
the host from being sentit.

ENABLE_SVC_NOTIFICATIONS <host_name>;<service_description> This is used to re-enable notifications for the]
specified service. Note that both the host nafne
and service description arequired.

DISABLE_SVC_NOTIFICATIONS <host_name>;<service_description> This is used to temporarily disable notifications
from being sent out about the specified service.
Notifications are automatically re-enabled
when NetSaint restarts. Note that both the hst
name and service description are required. This
doesnotdisable notifications for thieost.

ENABLE_HOST_SVC_NOTIFICATIONS <host_name> This is used to re-enable notifications for all
services on the specified host. THiesnot
enable notifications for thieost.

DISABLE_HOST_SVC_NOTIFICATIONS <host_name> This is used to temporarily disable notificatiopns
for all services on the specified host. Ttaes
notdisable natifications for thieost.

ENABLE_HOST_SVC_CHECKS <host_name> This will re-enable checks of all services on the
specified host. If one or more services were [n a
non-OK state when they were disabled,
contacts may receive notifications if the
service(s) recover after the checks are
re-enabled.

DISABLE_HOST_SVC_CHECKS <host_name> This will temporarily disable checks of all
services on the specified host. Service checl
are automatically re-enabled when NetSaint
restarts. Issuing this command will have the
side effect of temporarily preventing
notifications from being sent out for any of the
affected services. ttoesnot prevent
notifications about the host from being seunt.

n

ENABLE_HOST_NOTIFICATIONS <host_name> This will temporarily disable notifications for
this host. Note that thidoesnot enable
notifications for the services associated with
this host.

DISABLE_HOST_NOTIFICATIONS <host_name> This will temporarily disable notifications for
this host. Notifications are automatically
re-enabled when NetSaint restarts. Note tha
this doesnot disable notifications for the
services associated with thiest.

ENABLE_ALL_NOTIFICATIONS_BEYOND_HOST

<host_name>

This will enable notifications for all hosts and
services "beyond" the host specified by the
host_namergument (from the view of

NetSaint). This command is most often used i

conjunction witffedundanmonitoringhosts.

5

DISABLE_ALL_NOTIFICATIONS_BEYOND_HOST]|

<host_name>

This will temporarily disable notifications for
all hosts and services "beyond" the host
specified by thdost_namergument (from the
view of NetSaint). Notifications are
automatically re-enabled when NetSaint
restarts. This command is most often used i
conjunction witfredundantmonitoringhosts.

ENTER_STANDBY_MODE

<execution_time>

This will change the currejprogrammodéto
Standbyat the time specified by tlexecution
timeargument.

ENTER_ACTIVE_MODE

<execution_time>

This will change the currefprogrammodéto
Activeat the time specified by thexecution
timeargument.

SHUTDOWN_PROGRAM

<execution_time>

This will cause NetSaint to shutdown at the
time specified by thexecution_timargument.
Note: NetSaint cannot be restarted via the
interface once it has beshutdown.

eb

RESTART_PROGRAM

<execution_time>

This will cause NetSaint to flush all
configuration state information, re-read all th
config files, and restart monitoring at the tim
specified by thexecution_timargument

PROCESS_SERVICE_CHECK_RESULT

<host_name>;<service_description>;<return_code>;<plugin_outpu

t¥his command is used to submit check resul
for a particular service to NetSaint. These
"passive” checks are acted upon in the samg
manner as normal "active" checks. More
information on passive service checks can b

foundheré

SAVE_STATE_INFORMATION

<execution_time>

This will force NetSaint to dump current statq
information for all services and hosts to the f]
specified by thfstate_retention fijeariable.
You must enable theetain _state informatipn
option for this towork.

READ_STATE_INFORMATION

<execution_time>

This will force NetSaint to read previously
saved state information for all services and
hosts from the file specified by the
[State_retention fileariable. You must enable|
thelrefain_state_informatipaption for this to
work.

START_EXECUTING_SVC_CHECKS

This is used to resume the execution of serv|
checks. The execution of service checks ma|
have been stopped at an earlier time by eith:
receiving a
STOP_EXECUTING_SVC_CHECKS
command, or by setting the
[Execute_service chegkgtion in the main
config file to 0. Most often used when
implementingredundant monitorinhost

ce

er

STOP_EXECUTING_SVC_CHECKS

This is used to stop the execution of service
checks. When service checks are not being
executed, NetSaint will not keep requeuing
checks for a later time, but will not actually
execute any checks. This essentially puts
NetSaint into a "sleep" mode, as far as
monitoring is concerned. Most often used w

implementintfedundant monitorinfost

START_ACCEPTING_PASSIVE_SVC_CHECKS

This is used to resume the acceptance of
[passive serviceheckdfor all services. The
acceptance of passive service checks may H
been stopped at an earlier time by either
receiving a
STOP_ACCEPTING_PASSIVE_SVC_CHE(
command, or by setting the

[accept passive service chdoksion in the
main config file to 0. If passive checks have
been disabled for specific services using the|
DISABLE_PASSIVE_SVC_CHECKS
command, passive checks wilht be accepted
for those services, but will for athers.

STOP_ACCEPTING_PASSIVE_SVC_CHECKS

This is used to disable the acceptance of
passive serviceheckkfor all services.

ENABLE_PASSIVE_SVC_CHECKS

<host_name>;<service_description>

This is used to resume the acceptance of
[passive serviceheckkfor a specific service.
The acceptance of passive checks may havg
been disabled for a service at an earlier time
receiving a
DISABLE_PASSIVE_SVC_CHECKS
command. If passive checks have been disal
for all services either by using the
STOP_ACCEPTING_PASSIVE_SVC_CHE(
command or by setting the

[accept passive service chdoksion in the
main config file to 0, passive checks wiltht be
accepted for thiservice.

by

bled

KS

DISABLE_PASSIVE_SVC_CHECKS

<host_name>;<service_description>

This is used to disable the acceptance of

passive serviceheckgfor a specificservice.

Indirect Host and ServiceChecks

Introduction

Chances are, many of the services that you're going to be monitoring on your network can be checked
directly by using a plugin on the host that runs NetSaint. Examples of services that can be checked directly
include availability of web, email, and FTP servers. These services can be checked directly by a plugin
from the NetSaint host because they are publicly accessible resources. However, there are a number of
things you may be interested in monitoring that are not as publicly accessible as other services. These
"private"” resources/services include things like disk usage, processor load, etc. on remote machines.
Private resources like these cannot be checked without the use of an intermediary agent. Service checks
which require an intermediary agent of some kind to actually perform the check arenchiiset checks.

Indirect checks are usefidr:

® Monitoring "local" resources (such as disk usage, processer load, etc.) on remote hosts

® Monitoring services and hosts behind firewalls

® Obtaining more realistic results from checks of time-sensitive services between remote hosts (i.e.
ping response times between two renfaists)

There are several methods for performing indirect active clipaksivecheckgare not discussed here),
but 1 will only talk about how they can be done by usingnifpgaddon. Thiarpepandnetsaint_stajdan
also be used to perform indiredtecks.

Indirect Service Checks

The diagram below shows how indirect service checks work. Click the image for aviengien...

Indirect Service Checks

Last Updated: 047212000

Central Monitoring Host
(Qutside Of Firewall)

check_nrpe
plugin

Flrewall aifows nipe traiffic to
pass throngh JForioginating frowm

cehbral monitoring sener
Firewall {] / Firewall

L

Remote Host #1
{Running NRPE})

Remote Host #2 Remote Host #3 Remote Host #4

Multiple Indirected Service Checks

http://www.netsaint.org/docs/0_0_7/images/indirectsvccheck.gif

If you are monitoring servers that lie behind a firewall (and the host running NetSaint is outside that
firewall), checking services on those machines can prove to be a bit of a pain. Chances are that you are
blocking most incoming traffic that would normally be required to perform the monitoring. One solution
for performing active checkfpassivecheckbcould also be used) on the hosts behind the firewall would be
to poke a tiny hold in the firewall filters that allow the NetSaint host to make calls noggadaemon on

one host inside the firewall. The host inside the firewall could then be used as an intermediary in
performing checks on the other servers insidditbesall.

The diagram below show how multiple indirect service checks work. Notice hawpldaemon is

running on hosts #1 and #2. The copy that runs on host #2 is used to alfopethgent on host #1 to
perform a check of a "private” service on host #2. "Private" services are things like process load, disk
usage, etc. that are not directly exposed like SMTP, FTP, and web services. Click on the diagram for a
largerimage...

Multiple Indirected Service Checks

Last Updated: 047212000

Central Monitoring Host
(Qutside Of Firewall)

check_nrpe
plugin

Flrewall aifows hipe traffic to
pass throngh JF originating from

central monitoring sener
Firewall [] / Firewall

Remote Host #1
{Running NRPE)

check_nrpe
plugin

Private Local
Resource/Service

Remote Host #2
{Running NRPE)

Exposed Local
Resource’Senice

Private Local
Resource’Service

http://www.netsaint.org/docs/0_0_7/images/indirectsvccheck2.gif

Indirect Host Checks

Indirect host checks work on the same principle as indirect service checks. Basically, the plugin used in
the host check command asks an intermediary agent (i.e. a daemon running on a remote host) to perform
the host check for it. Indirect host checks are useful when the remote hosts being monitored are located
behind a firewall and you want to restrict inbound monitoring traffic to a particular machine. That machine
(remote host #1 in the diagram below) performs will perform the host check and return the results back to
the top levetheck_nrpeplugin (on the central server). It should be noted that with this setup comes

potential problems. If remote host #1 goes downghezk_nrpeglugin will not be able to contact the
nrpedaemon and NetSaint will believe that remote hosts #2, #3, and #4 are down, even though this may
not be the case. If host #1 is your firewall machine, then the problem isn’t really an issue because NetSaint
will detect that it is down and mark hosts #2, #3, and #4 as bamgchable.

The diagram below shows how an indirect host check can be performed by ufimugtti@emon and
check_nrpeplugin. Click the image for a largeersion.

Indirect Host Checks

Last Updated: 0441572000

Central Monitoring Host
{Outside Of Firewall)

check_nrpe
plugin

Firewall (] Firewrall

\ j ‘\ Firewall aliows nrpe tralfic to

pass through IF originating from
central manitoring sener

.‘

Remote Host #1
(Running NRPE)

check_ping
plugin
PING Test PING Test

Remote Host #2 Remote Host #4

Remote Host #3

http://www.netsaint.org/docs/0_0_7/images/indirecthostcheck.gif

PassiveServiceChecks

Introduction

Beginning with release 0.0.6, NetSaint can now process service check results that are submitted by
external applications. Service checks which are performed and submitted to NetSaint by external apps are
calledpassivechecks. Passive checks can be contrastedawiithechecks, which are service checks that

have been initiated byetSaint.

Why The Need For Passiv€hecks?

Passive checks are useful for monitoring servicesatieat

® |ocated behind a firewall, and can therefore not be checked actively from the host running NetSaint
® asynchronous in nature and can therefore not be actively checked in a reliable manner (e.g. SNMP
traps, security alertgfc.)

How Do Passive ChecksVork?

The only real difference between active and passive checks is that active checks are initiated by NetSaint,
while passive checks are performed by external applications. Once an external application has performed a
service check (either actively or by having received an synchronous event like an SNMP trap or security
alert), it submits the results of the service "check" to NetSaint througgxtiagal commantile|

The next time NetSaint processes the contents of the external command file, it will place the results of all
passive service checks into a queue for later processing. The same queue that is used for storing results
from active checks is also used to store the results from passivks.

NetSaint will periodically executeservice reapegventand scan the service check result queue. Each
service check result, regardless of whether the check was active or passive, is processed in the same
manner. The service check logic is exactly the same for both types of checks. This provides a seamless
method for handling both active and passive service check results.

How Do External Apps Submit Service CheclResults?

External applications can submit service check results to NetSaint by writing a
PROCESS_SERVICE_CHECK _ RESUlekternalcommangto thgexternal commantile|

The format of the command is fadlows:

[<timestamp>]
PROCESS_SERVICE_CHECK_RESULT;<host_name>;<description>;<return_code>;<plugin_output>

where...

® timestamgs the time in time_t format (seconds since the UNIX epoch) that the service check was
perfomed (or submitted). Please note the single space after the right bracket.

® host_namés the short name of the host associated with the servicelseheedefinition

e descriptionis the description of the service as specified ifstreicedefinition

e return_codses the return code of the check (0=0OK, 1=WARNING, 2=CRITICAL, -1=UNKNOWN)

® plugin_outputs the text output of the service check (i.e. the plogitput)

Note that in order to submit service checks to NetSaggnacémust have already been defined in the
[host configuratioriile] NetSaint will ignore all check results for services that had not been configured
before it was lagfre)started.

If you only want passive results to be provided for a specific service (i.e. active checks should not be
performed), simply set theheck_periocargument of the service definition tfimeperiodithat has no

valid times. This will prevent NetSaint from ever actively performing a check of the service. In order to
prevent NetSaint from giving you errors, settheck_commanadrgument to be[eommanithat you've

already defined somewhere. It doesn't really matter what it is (because it is never executed) - it just has to
bevalid.

An example shell script of how to submit passive service check results to NetSaint can be found in the
documentation ofmolatile serviceb

Submitting Passive Service Check Results From Remokosts

If an application that resides on the same host as NetSaint is sending passive service check results, it can
simply write the results directly to the external command file as outlined above. However, applications on
remote hosts can't do this so easily. In order to allow remote hosts to send passive service check results to
the host that runs NetSaint, I've developedrtbepaddon. The addon consists of a daemon that runs on

the NetSaint hosts and a client that is executed from remote hosts. The daemon will listen for connections
from remote clients, perform some basic validation on the results being submitted, and then write the
check results directly into the external command file (as described above). More information on the nsca

addon can be fourferg..

Using Both Active And Passive ServicEhecks

Unless you're implementingldistributedmonitoringenvironment with the central server accepting only
passive service checks (and not performing any active checks), you'll probably be using both types of
checks in your setup. As mentioned before, active checks are more suited for services that lend themselves
to periodic checks (availability of an FTP or web server, etc), whereas passive checks are better off at
handling asynchronous events that occur at variable intervals (securityedte)ts,

The image below gives a visual representation of how active and passive service checks can both be used
to monitor network resources (click on the image for a largesion).

The orange bubbles on the right side of the image are third-party applications that submit passive check
results to NetSaint's external command file. One of the applications resides on the same host as NetSaint,
so it can write directly to the command file. The other application resides on a remote host and makes used
of the nsca client program and daemon to transfer the passive check rasatSaimt.

The items on the left side of the image represent active service checks that NetSaint is performing. I've
shown how the checks can be made for local resources (disk usage, etc.), "exposed" resources on remote
hosts (web server, FTP server, etc.), and "private" resources on remote hosts (remote host disk usage,
processor load, etc.). In this example, the private resources on the remote hosts are actually checked by
making use of thierpdaddon, which facilitates the execution of plugins on rermosggs.

Using Active And Passive
Checks Together

Last Updated: 0401552000

Monitoring Host

External
Command File

Eoe

Remote Host #1 Remote Host #2

~_

Active Service Checks Passive Service Checks

http://www.netsaint.org/docs/0_0_7/images/activepassive.gif

Program Modes

Introduction

The idea of program modes is quite simple, but you need to understand the difference between them
before you start doing anything like implementredundant monitoringost$ There are two types of
program modesActive andStandby...

Active Mode

This is the default program mode for NetSaint. Whiladgtivemode, NetSaint will monitor all services

and hosts that you have defined in yjbast configuratioriile(s} When a problem arises with one of those
services or hosts, NetSaint will send out notifications to all appropriate contacts. This is equivalent to how
previous versions of NetSaiwbrked.

Standby Mode

While in standbymode, NetSaint will continue to monitor all services and hosts you defined ifaggur
[configurationfile(s), but itwill not send out notifications to any contacts when problems arise. This is
particularly useful when implementiigdudant monitoringost$ and is equivalent to temporarily
disabling notifications for all defined services and hosts. NetSaint will not send out notifications to any
contacts until it returns tactivemode.

Configuring The Initial Program Mode

By default, NetSaint will enteactivemode when it (re)starts. If you wish to change the initial program
mode tostandy you'll have to use thprogram_mod®ption in the main configuratidiie.

Changing Program Modes DuringRuntime

You can change the current program mode betaetveandstandbyby issuing afexternalcommangto

NetSaint via thieommandile] Of course, this assumes that you Hewabled external commacHeckk

For more information on external commands,

Two sample shell scrip{enter_active_modandenter_standy_modl@re provided in theample-scripts/
subdirectory of the NetSaint distribution as examples of how to change the program mode during runtime.
You will have to modify the scripts to match the location of before you can ugbem.

Redundant Network Monitoring

Introduction

This section describes a few scenarios for implementing redundant monitoring hosts an various types of
network layouts. With redundant hosts, you can maintain the ability to monitor your network when the
primary host that runs NetSaint fails or when portions of your network beaoraachable.

Note: If you are just learning how to use NetSaint, | would suggest not trying to implement redudancy
until you have becoming familiar with tfpeerequisitds’'ve laid out. Redundancy is a relatively
complicated issue to understand, and even more difficult to implereperly.

Index

[Prerequisitds
Consideratioﬂs

Samplescript$

Scenario 1 - Implementing redundancy on the same ne ent
Scenario 2 - A simEIe Waz to imEIement redundancz across newﬁmen]s
Scenario 3 - A smarter way to implement redundancy across net nis

Scenario 4 - Implementing multiple redundanogthodb

Prerequisites

Before you can even think about implementing redundancy with NetSaint, you need to be familiar with the
following...

Implementingeventhandlergor hosts and services

Issuingexternalcommandgo NetSaint via shell scripts

Executing plugins opemotehosts
Checking the status of the NetSaint process witfchieek netsaifplugin

Considerations

There are a few things you need to understand before you jump into implentedtindancy...

Version 0.0.5 was the first release of NetSaint where redundancy could actually be implemented in any
kind of reasonable manner. It just so happened that all the pieces fell into place for accomodating this
(eventhandlergprogrammode$ andexternalcommands Additional support for implementing

redundancy will be incorporated into future versions of NetSaint, but | needegalirack!

SampleScripts

All of the sample scripts that | use in this documentation can be foundenghthandlerssubdirectory
of the NetSaint distribution. You'll probably need to modify them to work on ggstem...

Scenario 1 - Implementing Redundancy On The Same Netwofkegment

Introduction

This is the easiest method of implementing redundant monitoring hosts on your network. However, this
method only will only protect against a limited number of failures. More complex setups are necessary in
order to provide better redundancy across different netaggknents.

Goals

The goal of this type of redundancy implementation is for a "slave" host running NetSaint to take over the
job of monitoringthe entirenetworkif:

1. The "master" host that runs NetSaint is down or..
2. The NetSaint process on the "master" host stops running forreasen

Network Layout Diagram

The diagram below shows a very simple network setup. For this scenario | will be assuming that hosts A
and E are both running NetSaint and are monitoring all the hosts shown. Host A will be considered the
"master" host and host E will be considered the "slaest.

Initial Program Modes

First off, we need to define wHatogrammodéthe master and slave hosts will be in when they start
monitoring. This is done by using fpeogram_modeption in the main configuration file. The master
host (host A) should have its initial program mode sattive while the slave host (host B) should have
its initial program mode set giandby That was easgnough...

Initial Configuration

Next we need to consider the differences betweghdbeconfiguratioriles on the master and slave
hosts...

| will assume that you have the master host (host A) setup to monitor services on all hosts shown in the
diagram above. The slave host (host E) should be setup to monitor the same services and hosts, with the
following additions in the configuratidiie...

e Thelhostdefinitior for host A (in the host E configuration file) should have a[aeshthandle
defined. Lets say the name of the host event handbamnidle-master-host-event

e The configuration file on host E should ha pdefined to check the status of the NetSaint
process on host A. Lets assume that you define this service check tolchedkenetsaifplugin on
host A. This can be done by using one of the methods descrired FAQ

® The service definition for the NetSaint process check on host A should haverdghandlerdefined.
Lets say the name of the service event handleainslle-master-proc-event

It is important to note that host A (the master host) has no knowledge of host E (the slave host). In this
scenario it simply doesn’t need to. Of course you may be monitoring services on host E from host A, but
that has nothing to do with the implementatiomeafundancy...

Event Handler Command Definitions

We need to stop for a minute and describe whatahemandlefinitiongfor the event handlers on the
slave host look like. Here is @xample...

command[handle-master-host-event]=/usr/local/netsaint/libexec/eventhandlers/handle-master-host-event
SHOSTSTATESSTATETYPES$
command[handle-master-proc-event]=/usr/local/netsaint/libexec/eventhandlers/handle-master-proc-event
$SERVICESTATESSTATETYPES

This assumes that you have placed the event handler scripts in the
/usr/local/netsaint/libexec/eventhandlelisectory. You may place them anywhere you wish, but you'll
need to modify the examples I've givbere.

Event Handler Scripts

Okay, now lets take a look at what the event handler scriptdikeok

Host Event Handlethandle-master-host-event

Service Event Handlg¢handle-master-proc-evént

#1/bin/sh

Only take action on hard host states...
case "$2"in
HARD)
case "$1"in
DOWN)
The master host has gone down!
We should now become the master host and take
over the responsibilities of monitoring the
network, so enter active mode...
lusr/local/netsaint/libexec/eventhandlers/enter_active_mode

UP)

The master host has recovered!

We should go back to being the slave host and

let the master host do the monitoring, so

enter standby mode...
/usr/local/netsaint/libexec/eventhandlers/enter_standby_mode

#!/bin/sh

Only take action on hard service states...
case "$2"in
HARD)
case "$1"in
CRITICAL)
The master NetSaint process is not running!
We should now become the master host and
take over the responsibility of monitoring
the network, so enter active mode...
lusr/local/netsaint/libexec/eventhandlers/enter_active_mode

WARNING)

UNKNOWN)

The master NetSaint process may or may not
be running.. We won't do anything here, but
to be on the safe side you may decide you

want the slave host to become the master in

5 # these situations...
esac H

n OK)
esac # The master NetSaint process running again!
exit 0 # We should go back to being the slave host,

so enter standby mode...
Jusr/local/netsaint/libexec/eventhandlers/enter_standby_mode

esac
esac
exit 0

What This Does ForUs

When things first start out, host A (the master host) &tivemode. This means that it monitors all
services and sends out notifications if there are problems or recoveries. Host E (the slave host) is in
standbymode, which means that it will monitor all services but malt send out anyotifications.

The NetSaint process on host E becomes the mastexihest..

e Host A goes down (thieandle-master-host-evehbst event handler is executed).
® The NetSaint process on host A is not running lidnedle-master-proc-eveservice event handler is
executed).

When the NetSaint process on host E has entered active mode, it will be able to send out notifications
about any service or host problems or recoveries. At this point host E has effectively taken over the
responsibility of monitoring theetwork!

The NetSaint process on host E returns to being the slave/thest..

® Host A has recovers (thendle-master-host-evehost event handler is executed).

® The NetSaint process on host A recovers [(dnadle-master-proc-eveservice event handler is
executed).

When the NetSaint process on host E has entered standby mode, it will not send out notifications about
any service or host problems or recoveries. At this point host E has handed over the responsibilities of
monitoring the network back to host A. Everything is now as it was when wetéritd!

Time Lags

Redundancy in NetSaint is by no means perfect. One of the more obvious problems is the lag time
between the master host failing and the slave host taking over. This is affectedatipwieg...

® The time between a failure of the master host and the first time the slave host detects a problem

® The time needed to verify that the master host really does have a problem (using service or host
check retries on the slave host)

® The time between the execution of the event handler and the next time that NetSaint checks for
externalcommands

You can minimize this lagy...

® Ensuring that the NetSaint process on host E (re)checks one or more services at a high frequency.
This is done by using theheck_intervahndretry_intervalarguments in eaggervicedefinitior}

® Ensuring that the number of host rechecks for host A (on host E) allow for fast detection of host
problems. This is done by using timax_attemptargument in thfaostdefinitior}

® Increase the frequency|ekternalcommangchecks on host E. This is done by modifying the
[command_check_interyaption in the main configuratidiie.

When NetSaint recovers on the host A, there is also some lag time before host E ristanmdbionode
This is affected by thillowing...

® The time between a recovery of host A and the time the NetSaint process on host E detects the
recovery

® The time between the execution of the event handler on host B and the next time the NetSaint process
on host E checks for exterrmmmands

The exact lag times between the transfer of monitoring responsibilities will vary depending on how many
services you have defined, the interval at which services are checked, and a lot of pure chance. At any rate,
its definitely better thanothing...

SpecialCases

Here is one thing you should be aware of... If host A goes down, host E will switctiviemode and

take over the responsibilities of monitoring. When host A recovers, host E will switdmttbymode. If

- when host A recovers - the NetSaint process on host A does not start up properly, there will be a period
of time when neither host is monitoring the network! Fortunately, the service check logic in NetSaint
accounts for this. The next time the NetSaint process on host E checks the status of the NetSaint process
on host A, it will find that it is not running. Host E will then switch backdtvemode and take over all
responsibilities omonitoring.

The exact amount of time that neither host is monitoring the network is hard to determine. Obviously, this
period can be minimized by increasing the frequency of service checks (on host E) of the NetSaint process
on host A. The rest is up to pure chance, but the total "blackout" time shouldn’thmtao

Scenario 2 - A Simple Way To Implement Redundancy Across Netwoi&gegments

Introduction

If you're monitoring hosts that reside on different network segments, you're going to need a more
substantial redundancy model that described in scenario 1. The following example is more complex than
that in the first scenario, but the logic behind it should become clear if you study it closely enough.

Goals

The goal of this type of redundancy implementation is for a "slave" host running NetSaint to take over the
job of monitoringthe entirenetworkif:

1. The "master” host that runs NetSaint is down or unreachable or...
2. The NetSaint process on the "master" host stops running forreasen

Network Layout Diagram

The diagram below shows a relatively simple network setup with host on two network segments. For this
scenario | will be assuming that hosts A and F are both running NetSaint and are monitoring all the hosts
shown. Host A will be considered the "master" host and host F will be considered the "slave" host. Nodes
H and | are routers that lie between the two netwgedments.

| I

IE] |

It]

— —
jmm— — | — |
G':‘ o G':‘ o

Initial Program Modes

For this example, the master host (host A) should have its ppnbglammodegset toactive while the
slave host (host F) should have its initial program mode stamalby

Initial Configuration

Next we need to consider the differences betweghdbeconfiguratiorileg on the master and slave
hosts...

| will assume that you have the master host (host A) setup to monitor services on all hosts shown in the
diagram above. The slave host (host F) should be setup to monitor the same services and hosts, with the
following additions in the configuratidiie...

e Thelhostdefinitior for host A (in the host F configuration file) should have a[aeshthandle
defined. Lets say the name of the host event handbanidle-master-host-event

® The configuration file on host F should ha pdefined to check the status of the NetSaint
process on host A. Lets assume that you define this service check tolchedkenetsaifplugin on
host A. This can be done by using one of the methods descrired FAQ

e The service definition for the NetSaint process check on host A should Haverahandlefdefined.
Lets say the name of the service event handleainslle-master-proc-event

® The host definitions for both host H and | should hewenthandlergdefined. Lets say the name of
the host event handler in both definitiondi@ndle-router-event

It is important to note that host A (the master host) has no knowledge of host F (the slave host). In this
scenario it simply doesn’t need to. Of course you may be monitoring services on host F from host A, but
that has nothing to do with the implementatiomezfundancy...

Event Handler Command Definitions

We need to stop for a minute and describe whatahemandlefinitiongfor the event handlers on the
slave host look like. Here is axample...

command[handle-master-host-event]=/usr/local/netsaint/libexec/eventhandlers/handle-master-host-event

$HOSTSTATESSTATETYPES
command[handle-master-proc-event]=/usr/local/netsaint/libexec/eventhandlers/handle-master-proc-event
$SERVICESTATESSTATETYPES$
command[handle-router-event]=/usr/local/netsaint/libexec/eventhandlers/handle-router-event
$HOSTSTATESSTATETYPES

This assumes that you have placed the event handler scripts in the
/usr/local/netsaint/libexec/eventhandlefisectory. You may place them anywhere you wish, but you'll
need to modify the examples I've givieere.

Event Handler Scripts

Okay, now lets take a look at what the event handler scriptdikeok

Host Event Handlethandle-master-host-evént

Service Event Handl¢handle-master-proc-evént

#1/bin/sh

Only take action on hard host states...
case "$2" in
HARD)
case "$1"in
DOWN)
The master host has gone down!
We should now become the master host and take
over the responsibilities of monitoring the
network, so enter active mode...
lusr/local/netsaint/libexec/eventhandlers/enter_active_mode

UP)

The master host has recovered!

We should go back to being the slave host and

let the master host do the monitoring, so

enter standby mode...
lusr/local/netsaint/libexec/eventhandlers/enter_standby_mode

esac
esac
exit 0

Host Event Handlethandle-router-eveht

#!/bin/sh

Only take action on hard service states...
case "$2" in
HARD)

case "$1"in

CRITICAL)

The master NetSaint process is not running!

We should now become the master host and

take over the responsibility of monitoring

the network, so enter active mode...
lusr/local/netsaint/libexec/eventhandlers/enter_active_mode

WARNING)
UNKNOWN)

The master NetSaint process may or may not
be running.. We won't do anything here, but
to be on the safe side you may decide you

want the slave host to become the master in
these situations...

OK)
The master NetSaint process running again!
We should go back to being the slave host,
so enter standby mode...
lusr/local/netsaint/libexec/eventhandlers/enter_standby_mode
esac
esac
exit 0

#1/bin/sh

Only take action on hard host states...
case "$2"in
HARD)
case "$1"in
DOWN)
The router has gone down!
We should now become the master host and take
over the responsibilities of monitoring the
network, so enter active mode...
lusr/local/netsaint/libexec/eventhandlers/enter_active_mode

UP)
The router has recovered!
We should go back to being the slave host and
let the master host do the monitoring, so
enter standby mode...
lusr/local/netsaint/libexec/eventhandlers/enter_standby_mode
esac
esac
exit 0

What This Does ForUs

When things first start out, host A (the master host) &tivemode. This means that it monitors all
services and sends out notifications if there are problems or recoveries. Host F (the slave host) is in
standbymode, which means that it will monitor all services but malt send out anyotifications.

The NetSaint process on host F becomes the mastexihest..

® Host A goes down (thieandle-master-host-evehbst event handler is executed).
® The NetSaint process on host A is not running lféredle-master-proc-eveservice event handler is
executed). If either router H or | goes down (tlaedle-router-eventost event handler executed).

When the NetSaint process on host F has entered active mode, it will be able to send out notifications
about any service or host problems or recoveries. At this point host F has effectively taken over the
responsibility of monitoring theetwork!

The NetSaint process on host F returns to being the slavevihest..

® Host A has recovers (thendle-master-host-evehbst event handler is executed).
® The NetSaint process on host A recovers [(gnedle-master-proc-eveservice event handler is
executed). If either router H or | recovers (Handle-router-evertost event handler executed).

When the NetSaint process on host F has entered standby mode, it will not send out notifications about
any service or host problems or recoveries. At this point host F has handed over the responsibilities of
monitoring the network back to host A. Everything is now as it was when wetérstd!

Shortcomings

This simple example has some shortcomings that you should be aware of. Note that when one of the
routers goes down, the NetSaint process on host F acts as if the NetSaint process on host A is no longer
running. This may or may not be the case. If the process on hgstigning, you'll get potentially bogus
notifications being sent out from both NetSaintcesses...

As an example, lets say that router H goes down and severs the connection between the two network
segments, but everything else is okay. From the view of the NetSaint process on host F, all hosts beyond
router H (hosts A, B, C, D, E, and I) are unreachable. At the same time, the NetSaint process on host A
(which is on the other side of router H) thinks that all hosts beyond router H (hosts F and G) are
unreachable. Both NetSaint processes see that router H is down, but that’s the only thing they agree on.
This might lead to an enormous amount of bogus notifications being sent out to you. You could potentially
get two notifications about router H being down (one from each process) and one notification about every
other host on the network beingreachable!

Scenario 3 - A Smarter Way To Implement Redundancy Across Networegments

Introduction

This is basically just an improvement in the redundancy logic described above in scenario 2. What we will
do is make both monitoring hosts aware of each other. In scenario 2, the slave host (host F) knew about
the master host (host A), but the master was unaware of the slave. In this scenario both the slave and
master hosts will be aware of each other, and will use that information to make better decisions on how to
take over or adjust monitorirrg@sponsibilities.

Goals

We have several goals with this redundasognario...
The "slave" host running NetSaint should take over the job of monittrengntirenetworkif:

1. The NetSaint process on the "master” host stops running for some reason

2. The "master" host that runs NetSaint is down

3. The "master" host becomes unreachable due to one or both of the routers going down and the
"master" host was last known to be either dowaroeachable

The "slave" host running NetSaint should take over the job of monitoniygts local networlsegment
if:

1. The "master" host becomes unreachable due to one or both of the routers going down and the
"master" host was last known to be

The "master" host running NetSaint shosidpmonitoring the entire network and change to monitoring
only its local networlsegmenif:

1. The "slave" host becomes unreachable due to one or both of the routers going down and the "slave"
host was last known to g

Network Layout Diagram

See network diagram for scenario 2 - itsghee...

Initial Program Modes

The master host (host A) should have its inirdgrammodéset toactive while the slave host (host F)
should have its initial program mode sestandby This is the same setup as described in sceBario

Initial Configuration

The rest of this documentation is incomplete. Since it has been missing since 0.0.5 was released and no
one asked about it, | assume no one need} it.

Scenario 4 - Implementing Multiple RedundancyMethods

If you've got a large, complex network and are paranoid about ensuring that NetSaint monitors everything,
you'll probably want to look into implementing multiple redundancy methods. This basically involves
combining the redundancy methods described in scenarios 1 and 3 to create a pool of monitoring hosts that
are all aware of each other’s state and can take over all or part of the network monitoring responsibilites if
necessary. If you found the concepts presented in scenario 3 difficult to understand, you should be aware

that the complexity of configuration files and event handler scripts will grow exponentially as you add
additional monitoring hosts to a multiple redundasegup.

Since there are endless possibilities for implementing multiple redundancy methods, | won't try to discuss
them here. If you decide to implement mixed redundancy methods on your network be prepared to spend a
lot of time analyzing your network structure, its critical failure points (i.e. routers, firewalls, etc.), the

location of monitoring hosts, and what should happen at each monitoring host in the event of a problem.
When implementing multiple redundancy methods you cannot simply create event handler scripts based
on the state of routers, etc. - you must also take into account the state of other monitoring hosts on the
local network segment and (possibly) on ottegments.

ServiceCheckParallelization

Introduction

Beginning with release 0.0.5, the ability to execute service checks in parallel was built into NetSaint. This
documentation will attempt to explain in detail what that means and how it affects services that you have
defined.

Changes In Service Checkogic

In order to facilitate parallelized service checks, the service check logic has been changed from that of
version 0.0.4 and earlier. These earlier versions of NetSaint executed one service check at a time and
processed the results from the check before moving onto theergide.

Beginning with version 0.0.5, the service check logic has been broken up into two distinct parts -
execution of servicehecksandprocessing of service chemsults(also called service "reapesVents).

How The Parallelization Works

Before | can explain how the service check parallelization works, you first have to understand a bit about
how NetSaint schedules events. All internal events in NetSaint (i.e. log file rotations, external command
checks, service checks, etc.) are placed in an event queue. Each item in the event queue has a time at
which it is scheduled to be executed. NetSaint does its best to ensure that all events get executed when
they should, although events may fall behing schedule if NetSaint is busy dointhothsr

Service checks are one type of event that get scheduled in NetSaint’s event queue. When it comes time for
a service check to be executed, NetSaint will kick off another process (using a call to fork()) to go out and
run the service check (i.e. a plugin of some sort). NetSaintroiesowever, wait for the service check to

finish! Instead, NetSaint will immediately go back to servicing other events that reside in the event

queue...

So what happens when the service check finishes executing? Well, the process that was started by
NetSaint to run the service check sends a message back to NetSaint containing the results of the service
check. It is then up to NetSaint to check for and process the results of that service check when it gets a
chance.

In order for NetSaint to actually do any monitoring, it much process the results of service checks that have
finished executing. This is done via a service check "reaper" process. Service "reapers" are another type of
event that get scheduled in NetSaint's event queue. The frequency of these "reaper" events is determined
by theservice reaper frequenoyption in the main configuration file. When a "reaper" event is executed,

it will check for any messages that contain the result of service checks that have finished executing. These
service check results are then handled by the core service monitoring logic. From there NetSaint
determines whether or not hosts should be checked, notifications should be sent out, etc. When the service
check results have been processed, NetSaint will reschedule the next check of the service and place it in
the event queue for later execution. That completes the service check/momiyataig

For those of you who really want to know, but haven't looked at the code, NetSaint uses message queues
to handle communication between NetSaint and the process that actually runs theleckice

Potential Gotchas...

You should realize that there are potential drawbacks to having service checks parallelized. Since more
than one service check may be running at the same time, they have may interfere with one another. You'll
have to evaluate what types of service checks you’re running and take appropriate steps to guard against
any unfriendly outcomes. This is particularly important if you have more than one service check that
accesses any hardware (like a modem). Also, if two or more service checks connect to daemon on a
remote host to check some information, make sure that daemon can handle multiple simultaneous
connections.

Fortunately, there are some things you can do to protect against problems with having some types of
service checkcollide"...

1. The easiest thing you can do to prevent service check collisions to to use the
[service interleave factmariable. Interleaving services will help to reduce the load imposed upon
remote hosts by service checks. Set the variable to use "smart" interleave factor calculation and then
adjust it manually if you find it necessary to do so.

2. The second thing you can do is to seftiax_attemptsrgument in each service definition to
something greater than one. If the service check does happen to collide with another running check,
NetSaint will retry the service cheokax_attempts-fimes before notifying anyone of a problem.

3. You could try is to implement some kind of "back-off and retry" logic in the actual service check
code, although you may find it difficult or too time-consuming

4. If all else fails you can effectively prevent service checks from being parallelized by setting the
[max_concurrent_chedksption to 1. This will allow only one service to be checked at a time, so it
isn’t a spectacular solution. If there is enough demand, | will add an option to the service definitions
which will allow you to specify on a per-service basis whether or not a service check can be
parallelized. If there isn’t enough demanedn’t...

One other thing to note is the effect that parallelization of service checks can have on system resources on
the machine that runs NetSaint. Running a lot of service checks in parallel can be taxing on the CPU and
memory. Thénter_check delay methjwill attempt to minimize the load imposed on your machine by
spreading the checks out evenly over time (if you use the "smart" method), but it isn’t a surefire solution.

In order to have some control over how many service checks can be run at any given time, use the

Imax concurrent chedksriable. You'll have to tweak this value based on the total number of services

you check, the system resources you have available (CPU speed, memory, etc.), and other processes which
are running on your machine. For more information on how to tweakabeconcurrent_checksriable

for your setup, read the documentationcbeckscheduling

What Isn’t Parallelized

It is important to remember that only theecutiorof service checks has been parallelized. There is good
reason for this - other things cannot be parallelized in a very safe or sane manner. In particular, event
handlers, contact notifications, processing of service checks, and host cheukyarallelized. Here's
why...

Eventhandlersare not parallelized because of what they are designed to do. Much of the power of event
handlers comes from the ability to do proactive problem resultion. An example of this is restarting the web
server when the HTTP service on the local machine is detected as being down. In order to prevent more
than one event handler from trying to "fix" problems in parallel (without any knowledge of what each

other is doing), | have decided to not paralletizem.

Contactnotificationsare not parallelized because of potential notification methods you may be using. If,

for example, a contact notification uses a modem to dial out and send a message to your pager, it requires
exclusive access to the modem while the notification is in progress. If two or more such notifications were
being executed in parallel, all but one would fail because the others could not get access to the modem.
There are ways to get around this, like providing some kind of "back-off and retry" method in the
notification script, but I've decided not to rely on users having implemented this type of feature in their
scripts. One quick note - if you have service checks which use a modem, make sure that any notification
scripts that dial out have some method of retrying access to the modem. This is necessary because a
service check may be running at the same time a notificiation

Processing of service chemsultshas not been parallelized. This has been done to prevent situations
where multiple notifications about host problems or recoveries may be sent out if a host goes down,
becomes unreachable,recovers.

Volatile Services

Introduction

Beginning with release 0.0.6 of NetSag#yvicedefinitionghave been extended to allow for a distinction
between "normal” services and "volatile" services. Iiaatile> option in each service definition allows
you to specify whether a specific service is volatile or not. For most people, the majority of all monitored
services will be non-volatile (i.e. "normal"). However, volatile services can be very useful when used

properly...

What Are They Useful For?

Volatile services are useful fanonitoring...

e things that automatically reset themselves to an "OK" state each time they are checked
® events such as security alerts which require attention every time there is a problem (and not just the
first time)

What's So Special About VolatileServices?

Volatile services differ from "normal" services in three important wgshtimethey are checked when
they are in fnardnon-OK state, and the check returns a non-OK state (i.e. no state changeunee). ..

® the non-OK service state is logged
® contacts are notified about the problem (if thatteat should belong
e theleventhandle}for the service is run (if one has betsfined)

These events normally only occur for services when they are in a non-OK state and a hard state change has
just occurred. In other words, they only happen the first time that a service goes into a non-OK state. If
future checks of the service result in the same non-OK state, no hard state change occurs and none of the
events mentioned take plaagain.

The Power OfTwo

If you combine the features of volatile services|passive serviceheck$ you can do some very useful
things. Examples of this include handling SNMP traps, security adécts,

How about an example... Let’s say you're runifiRsgonicSoftware’§PortSentrjproduct (which is free,
by the way) to detect port scans on your machine and automatically firewall potential intruders. If you
want to let NetSaint know about port scans, you could déotlesving..

In NetSaint:

® Configure a service calld@ort Scansand associate it with the host that PortSentry is running on.

® Set the<max_attempts>option in the service definition to 1. This will tell NetSaint to immediate
force the service intofmardstat¢when a non-OK state is reported.

® Set the<check_time>option in the service definition tdteneperiodithat containgo valid time

http://www.psionic.com/
http://www.psionic.com/abacus/portsentry

ranges. This will prevent NetSaint from ever actively checking the service. Even though the service
check will get scheduled, it will never actually dieecked.

In PortSentry:

Edit your PortSentry configuration file (portsentry.conf), define a command for the
KILL_RUN_CMD directive adollows:
KILL_RUN_CMD="/usr/local/netsaint/libexec/eventhandlers/submit_check_rekokt name>
'Port Scans’ 2 'Port scan from host $TARGETS$ on port $PORTS$. Host haditeseslled.™

Make sure to replacehost_name>with the short name of the host that the service is assouidted

Create a shell script in thasr/local/netsaint/libexec/eventhandlelisectory namedubmit_check result
The contents of the shell script should be something similiar tmlbeing...

#l/bin/sh

Write a command to the NetSaint command file to cause
it to process a service check result

echocmd="/bin/echo"
CommandFile="/usr/local/netsaint/var/rw/netsaint.cmd"

get the current date/time in seconds since UNIX epoch
datetime="date +%s'

create the command line to add to the command file
cmdline="[$datetime] PROCESS_SERVICE_CHECK_RESULT;$1;$2;$3;$4"

append the command to the end of the command file
‘$echocmd $cmdline >> $CommandFile*

Note that if you are running PortSentry as root, you will have to make additions to the script to reset file
ownership and permissions so that NetSaint and the CGls can read/modify the command file. Details on
permissions/ownership of the command file can be ffnand

So

what happens when PortSentry detects a port scan mathine?

It blocks the host (this is a function of the PortSentry software)

It executes theubmit_check_resudsthell script to send the security alert info to NetSaint

NetSaint reads the command file, recognized the port scan entry as a passive service check
NetSaint processes the results of the service by logging the CRITICAL state, sending notifications to
contacts (if configured to do so), and executes the event handler Rorttigcansservice (if one is
defined)

Notification Escalations

Introduction

Beginning with release 0.0.6, NetSaint suppopsonal escalation of contact notifications for specific
services or hosts within specific hostgroups. I'll explain quickly how they work, although they should be
fairly self-explanatory...

Service Notification Escalations

Escalation of service natifications is accomplished by deflgergice escalatiodefinitiongin the host
config file. Service escalation definitions are used to escalate notifications for a pasécuiee.

Host Notification Escalations

Escalation of host notifications is accomplished by defifiostgroup escalatiatefinitiongin the host

config file. Hostgroup escalation definitions are used to escalate host naotifications for all hosts in a
particular hostgroup. The examples | provide below all use service escalation definitions, but hostgroup
escalations work the same way (except for the fact that they are used for host notifications and not service
notifications).

When Are Notifications Escalated?

Notifications are escalatedand onlyif one or more escalation definitions matches the current notification
that is being sent out. If a host or service notificatioasnot have any valid escalation definitions that
applies to it, the contact group(s) specified in eithehtsgrougor|servic¢definition will be used for

the notification. Look at the exampbelow:

service[dev]=HTTP;0;24x7;3;5;1;nt-admins;240;24x7;1;1;1;;check_http
serviceescalation[dev;HTTP]=3-5;nt-admins,managers;90
serviceescalation[dev;HTTP]=6-10;nt-admins,managers,everyone;60

Notice that there are "holes" in the notification escalation definitions. In particular, notifications 1 and 2
are not handled by the escalations, nor are any notifications beyond 10. For the first and second
notification, as well as all notifications beyond the tenth onedéifi@ultcontact groups specified in the
service definition are used. In the example above, this would mean thatathminscontact group would

be the only group that was notified during thésaes".

Contact Groups

When defining notification escalations, it is important to keep in mind that any contact groups that were
members of "lower" escalations (i.e. those with lower notification number ranges) should also be included
in "higher" escalation definitions. This should be done to ensure that anyone who gets notified of a
problemcontinuego get notified as the problem is escalatedample:

service[dev]=HTTP;0;24x7;3;5;1;nt-admins;240;24x7;1;1;1;;check_http
serviceescalation[dev;HTTP]=3-5;nt-admins,managers;90
serviceescalation[dev;HTTP]=6-0;nt-admins,managers,everyone;60

The default contact group for the service 'HTTP’ on host 'deVv’ is the group nairasbins The first (or
"lowest") escalation level includes both titeadminsandmanagersontact groups. The last (or

"highest") escalation level includes thieadmins managersandeveryonecontact groups. Notice that the
nt-adminscontact group is included in both escalation definitions. This is done so that they continue to get
paged if there are still problems after the first two service notifications are sent oaotaifhgersontact

group first appears in the "lower" escalation definition - they are first notified when the third problem
notification gets sent out. We want tmanagersggroup to continue to be notified if the problem continues
past five notifications, so they are also included in the "higher" escatifnition.

Overlapping EscalationRanges

Notification escalation definitions can have notification ranges that overlap. Take the foleowaimgle:

serviceescalation[dev;HTTP]=3-5;nt-admins,managers;20
serviceescalation[dev;HTTP]=4-0;0on-call-support;30

In the examplabove:

e Thent-adminsandmanagerscontact groups get notified on the third notification
e All three contact groups get notified on the fourth and fifth notifications
e Only theon-call-supportcontact group gets notified on the sixth (or higmexjfication

RecoveryNotifications

Recovery notifications are slightly different than problem notifications when it comes to escalations. Take
the followingexample:

serviceescalation[dev;HTTP]=3-5;nt-admins,managers;20
serviceescalation[dev;HTTP]=4-0;0n-call-support;30

If, after three problem notifications, a recovery notification is sent out for the service, who gets notified?
The recovery is actually the fourth notification that gets sent out. However, the escalation code is smart
enough to realize that only those people who were notified about the problem on the third notification
should be notified about the recovery. In this casenttaeminsandmanagersontact groups would be
notified of therecovery.

Notification Intervals

You can change the frequency at which escalated notifications are sent out for a particular host or service
by using thenotification_intervaloption of the hostgroup or service escalation definiio@mample:

service[dev]=HTTP;0;24x7;3;5;1;nt-admins;240;24x7;1;1;1;;check_http
serviceescalation[dev;HTTP]=3-5;nt-admins,managers;45
serviceescalation[dev;HTTP]=6-0;nt-admins,managers,everyone;60

In this example we see that the default notification interval for the services is 240 minutes (this is the value
in the service definition). When the service notification is escalated on the 3rd, 4th, and 5th notifications,
an interval of 45 minutes will be used between notifications. On the 6th and subsequent notifications, the
notification interval will be 60 minutes, as specified in the second escaditiimition.

Since it is possible to have overlapping escalation definitions for a particular hostgroup or service, and the
fact that a host can be a member of multiple hostgroups, NetSaint has to make a decision on what to do as
far as the notification interval is concerned when escalation definitions overlap. In any case where there
are multiple valid escalation definitions for a particular notification, NetSaint will choose the smallest
notification interval. Take the followingxample:

service[dev]=HTTP;0;24x7;3;5;1;nt-admins;240;24x7;1;1;1;;check_http
serviceescalation[dev;HTTP]=3-5;nt-admins,managers;45
serviceescalation[dev;HTTP]=4-0;nt-admins,managers,everyone;60

We see that the two escalation definitions overlap on the 4th and 5th notifications. For these notifications,
NetSaint will use a notification interval of 45 minutes, since it is the smallest interval present in any valid
escalation definitions for thosmtifications.

One last note about notification intervals deals with intervals of 0. An interval of 0 means that NetSaint
should only sent a notification out for the first valid notification during that escalation definition. All
subsequent notifications for the hostgroup or service will be supressed. Takathe:

service[dev]=HTTP;0;24x7;3;5;1;nt-admins;240;24x7;1;1;1;;check_http
serviceescalation[dev;HTTP]=3-5;nt-admins,managers;45
serviceescalation[dev;HTTP]=4-6;nt-admins,managers,everyone;0
serviceescalation[dev;HTTP]=7-0;nt-admins,managers;30

In the example above, the maximum number of problem notifications that could be sent out about the
service would be four. This is because the notification interval of 0 in the second escalation definition
indicates that only one notification should be sent out (starting with and including the 4th notification) and
all subsequent notifications should be repressed. Because of this, the third service escalation definition has
no effect whatsoever, as there will never be more thamiatifications.

Distributed Monitoring

Introduction

Beginning with release 0.0.6, NetSaint cgmionally be configured to support distributed monitoring of
network services and resources. I'll try to briefly explan how this cactemplished...

Goals

The goal in the distributed monitoring environment that | will describe is to offload the overhead (CPU
usage, etc.) of performing service checks from a "central" server onto one or more "distributed" servers.
Most small to medium sized shops will not have a real need for setting up such an environment. However,
when you want to start monitoring hundreds or even thousarsts{and several times that many

services) using NetSaint, this becomes guitgortant.

ReferenceDiagram

The diagram below should help give you a general idea of how distributed monitoring works with
NetSaint. I'll be referring to the items shown in the diagram as | exjbieigs...

Distributed

Central Monitoring Server

Monitoring

Last Updated: 040172000

Status File

External
Command File

Distributed Monitoring Server #1

Distributed Monitoring Server #2

®

oCcsp
Command

i " OCSP @
: 0 Command

Haosts'services maonitored divectly by
disteibuted sener i, and indirectiy by
central sener

Haosts'services maonitored divectly by
disteibuted sener 2, and indirectiy by
central server

http://www.netsaint.org/docs/0_0_7/images/distributed.gif

Central Server vs. Distributed Servers

When setting up a distributed monitoring environment with NetSaint, there are differences in the way the
central and distributed servers are configured. I'll show you how to configure both types of servers and
explain what effects the changes being made have on the overall monitoring. For starters, lets describe the
purpose of the different types of servers...

The function of alistributedserveris to actively perform checks all the services you define for a "cluster"”

of hosts. | use the term "cluster” loosely - it basically just mean an arbitrary group of hosts on your
network. Depending on your network layout, you may have several cluters at one physical location, or
each cluster may be separated by a WAN, its own firewall, etc. The important thing to remember to that
for each cluster of hosts (however you define that), there is one distributed server that runs NetSaint and
monitors the services on the hosts in the cluster. A distributed server is usually a bare-bones installation of
NetSaint. It doesn’t have to have the web interface installed, send out notifications, run event handler
scripts, or do anything other than execute service checks if you don’t want it to. More detailed information
on configuring a distributed server contater...

The purpose of theentralserveris to simply listen for service check results from one or more distributed
servers. Even though services are occassionally actively checked from the central server, the active checks
are only performed in dire circumstances, so lets just say that the central server only accepts passive check
for now. Since the central server is obtaifagsive serviceheckresults from one or more distributed

servers, it serves as the focal point for all monitoring logic (i.e. it sends out notifications, runs event

handler scripts, determines host states, has the web interface installed,

Obtaining Service Check Information From Distributed Monitors

Okay, before we go jumping into configuration detail we need to know how to send the service check
results from the distributed servers to the central server. I've already discussed how to submit passive
check results to NetSaint from same host that NetSaint is running on (as described in the documentation
on[passivechecky, but | haven't given any info on how to submit passive check results fromhatsist

In order to facilitate the submission of passive check results to a remote host, I've writtecetimidoh

The addon consists of two pieces. The first is a client program (send_nsca) which is run from a remote
host and is used to send the service check results to another server. The second piece is the nsca daemon
(nsca) which either runs as a standalone daemon or under inetd and listens for connections from client
programs. Upon receiving service check information from a client, the daemon will sumbit the check
information to NetSaint (on the central server) by insertiRR®OCESS_SVC_CHECK_RESULT

command into thiexternal commantile] along with the check results. The next time NetSaint checks for
[externalcommandsit will find the passive service check information that was sent from the distributed
server and process it. Easyh?

Distributed Server Configuration

So how exactly is NetSaint configured on a distributed server? Basically, its just a bare-bones installation.
You don’t need to install the web interface or have notifications sent out from the server, as this will all be
handled by the centrakrver.

Key configurationrchanges:

® Only those services and hosts which are being monitored directly by the distributed server are defined
in thelhost configuratiorilel

e The distributed server has its inif@logrammodéset toSTANDBY This will prevent any
notifications from being sent out by the server.

® The distributed server is configureddbsess oveservicep

e The distributed server has[aospcommantiefined (as describdatlow).

In order to make everything come together and work properly, we want the distributed server to report the
results ofall service checks to NetSaint. We could [ggenthandlerto reportchangesn the state of a

service, but that just doesn't cut it. In order to force the distributed server to report all service check

results, you must enabled jbbsess over_servigegtion in the main configuration file and provide a
[ocsp_commantb be run after every service check. We will use the ocsp command to send the results of

all service checks to the central server, making use of the send_nsca client and nsca daemon (as described
above) to handle theanmission.

In order to accomplish this, you'll need to define an ocsp commanthlike

ocsp_command=submit_check_result

Thelcommandlefinition for thesubmit_check_resuttommand looks something likieis:

command[submit_check_result]=/usr/local/netsaint/libexec/eventhandlers/submit_check result
$HOSTNAMES '$SERVICEDESC$’ $SERVICESTATES '$SOUTPUTY$

Thesubmit_check_resusthell scripts looks something like this (replaeatral_servewith the IP address
of the centrakerver):

#!/bin/sh

Arguments:

$1 = host_name (Short name of host that the service is

associated with)

$2 = svc_description (Description of the service)

$3 = state_string (A string representing the status of
the given service - "OK", "WARNING", "CRITICAL"
or "UNKNOWN")

$4 = plugin_output (A text string that should be used
as the plugin output for the service checks)

o HH

Convert the state string to the corresponding return code
return_code=-1

case "$3"in
OK)
return_code=0

WARNING)
return_code=1

CRITICAL)
return_code=2

UNKNOWN)
return_code=-1

esac
pipe the service check info into the send_nsca program, which
#in turn transmits the data to the nsca daemon on the central

monitoring server

/binfecho -e "$1\t$2\t$return_code\t$4\n" | /usr/local/netsaint/bin/send_nsca central_server -c lusr/local/netsaint/var/send_nsca.cfg

The script above assumes that you have the send_nsca program and it configuration file (send_nsca.cfq)
located in théusr/local/netsaint/binand/usr/local/netsaint/varflirectoriesyespectively.

That's it! We've sucessfully configured a remote host running NetSaint to act as a distributed monitoring
server. Let’s go over exactly what happens with the distributed server and how it sends service check
results to NetSaint (the steps outlined below correspond to the numbers in the referenceathagedm

1. After the distributed server finishes executing a service check, it executes the command you defined

by thelocsp_commarjdariable. In our example, this is the
lusr/local/netsaint/libexec/eventhandlers/submit_check_rsstifit. Note that the definition for the
submit_check_resuttommand passed four pieces of information to the script: the name of the host

the service is associated with, the service description, the return code from the service check, and the
plugin output from the service check.

. Thesubmit_check_resudicript pipes the service check information (host name, description, return

code, and output) to treend_nscalient program.

Thesend_nscg@rogram transmits the service check information tonfcadaemon on the central
monitoring server.

. Thenscadaemon on the central server takes the service check information and writes it to the

external command file for later pickup by NetSaint.

. The NetSaint process on the central server reads the external command file and processes the passive

service check information that originated from the distributed moniteengger.

Central Server Configuration

We've looked at hot distributed monitoring servers should be configured, so let’s turn to the central server.
For all intensive purposes, the central is configured as you would normally configure a standalone server.
It is setup asollows:

The central server has the web interface installed (optional, but recommended)

The central server has its iniflalogrammodéset toACTIVE This will enable notifications.
(optional, but recommended)

The central server hgtive servicehecksdisabled (optional, but recommended - see notes below)
The central server higxternal commandheckgenabled (required)
The central server hfpmssive serviceheckgenabledrequired)

There are three other very important things that you need to keep in mind when configuring the central
server:

The central server must hgservicedefinitiongfor all serviceshat are being monitored by all the
distributed servers. NetSaint will ignore passive check results if they do not correspond to a service
that has been defined.

If you're only using the central server to process services whose results are going to be provided by
distributed hosts, you can simply disable all service checks on a program-wide basis by setting the
lexecute service cheglgective to 0.

If you're using the central server to actively monitor a few services on its own (without the aid of
distributed servers), the norn@ieck_periocargument for eadbervicedefinition for services whose
results are going to provided by distributed hosts should be sfitte periodthat hasio valid time

ranges

It is important that you either disable all service checks on a program-wide basis ockettheeriod
argument for each service definition (for passive services) to a timeperiod that contains no valid time
ranges. This will ensure that active service checks are never executed under normal circumstances. The
services will keep getting rescheduled at their normal check intervals (3 minutes, 5 minutes, etc...), but the
won't be executed because no time is a valid time to execute the service check. This rescheduling loop
will just continue all the while NetSaint is running. I'll explain why this is donebit.a

That'’s it! Easyhuh?

Problems With PassiveChecks

For all intensive purposes we can say that the central server is relying solely on passive checks for
monitoring. The main problem with relying completely on passive checks for monitoring is the fact that
NetSaint must rely on something else to provide the monitoring data. What if the remote host that is
sending in passive check results goes down or becomes unreachable? If NetSaint isn’t actively checking
the services on the host, how will it know that therepsablem?

We can protect against this type of problem by using another addon to monitoring incoming passive check
results...

Watchdog Daemon

In order to protect against situations where remote hosts may stop sending passive service checks into the
central monitoring server, I've developed [fswatchdaemon. The daemon’s sole purpose in life is to

ensure that service checks are either being provided passively by distributed servers on a regular basis or
performed actively by the central server if the naesks.

If the pscwatchdaemon detects that a given service check has not been performed within a given threshold
of time, it will send a command to NetSaint via|gxternal commantle|telling it to schedule an

immediate active check of the service thdbrsed(forced checks are enabled with an option in the
pscwatchdaemon). Forced service checks cut through invalid timeperiods, disabled services, etc. and
force NetSaint to actively execute the service check. When NetSaint performs an active check of the
service, it will be able to tell if there is a real problem or not. Of course, this assumes that you've defined
the service check command to work properly from the central host, but that's another problem.it! That's

Combining Distributed Monitoring With Redundancy

Nothing hereyet...

Monitoring Service and HosClusters

Introduction

Several people have asked how to go about monitoring clusters of hosts or services, so | decided to write
up a little documentation on how to do this. Its fairly straightforward, so hopefully you find things easy to
understand...

First off, we need to define what we mean by a "cluster". The simplest way to understand this is with an
example. Let's say that your organization has five hosts which provide redundant DNS services to your
organization. If one of them fails, its not a major catastrophe because the remaining servers will continue
to provide name resolution services. If you're concerned with monitoring the availability of DNS service
to your organization, you will want to monitor five DNS servers. This is what | consider tedpeice

cluster. The service cluster consists of five separate DNS services that you are monitoring. Although you
do want to monitor each individual service, your main concern is with the overall status of the DNS
service cluster, rather than the availability of any one partiselaice.

If your organization has a group of hosts that provide a high-availability (clustering) solution, | would
consider those to betmstcluster. If one particular host fails, another will step in to take over all the
duties of the failed server. As a side note, check oliitie-Availability Linux Projectfor information

on providing host redundancy witlinux.

Plan of Attack

There are several ways you could potentially monitor service or host clusters. I'll describe the method that
| believe to be the easiest. Monitoring service or host clusters involvehitwg:

® Monitoring individual cluster elements
® Monitoring the cluster as a collectieatity

Monitoring individual host or service cluster elements is easier than you think. In fact, you're probably
already doing it. For service clusters, just make sure that you are monitoring each service element of the
cluster. If you've got a cluster of five DNS servers, make sure you have five s¢geavatedefinitiong
(probably using theheck_dnglugin). For host clusters, make sure you have configured apprqpusite
[definitiongfor each member of the cluster (you'll also have to define at least one service to be monitored
for each of the hostsimportant: You're going to want to disable notifications for the individual cluster
elements (host or service definitions). Even though no notifications will be sent about the individual
elements, you'll still get a visual display of the individual host or service statusjgtatneCGl This will

be useful for pinpointing the source of problems within the cluster ifuthee.

Monitoring the overall cluster can be done by using the previously cached results of cluster elements.
Although you could re-check all elements of the cluster to determine the cluster’s status, why waste
bandwidth and resources when you already have the results cached? Where are the results cached? Cached
results for cluster elements can be found ifstaéudog (assuming you are monitoring each element).
Thecheck_clusteplugin is designed specifically for checking cached host and service states in the status

log. Important: Although you didn’t enable notifications for individual elements of the cluster, you will

want them enabled for the overall cluster statieck.

http://www.linux-ha.org/

Using thecheck cluster Plugin

The check_cluster plugin is designed to check the overall status of a host or service cluster. It works by
checking the cached status information of individual host or service cluster elemenistatufied

More to come... The check_cluster plugin can temporarily be obtained from
[http://www.netsaint.org/download/algha

Monitoring Service Clusters

First off, you're going to have to defindsarvicéfor monitoring the cluster. This service will perform the
check of the overall status of the cluster. You are probably going to want to have natifications enabled for
this service so you know when there are problems that need to be looked at. You probably don't care so
much about the status of any one of the services that are members of the cluster, so you can disable
notifications in those those servidefinitions.

Okay, let's assume that you haveheck_service_clusteommantdefined agollows:

command[check_service_cluster]=/usr/local/netsaint/libexec/check_cluster --service
/usr/local/netsaint/var/status.log $ARG1$ $ARG2$ < SARG3$

Let's say you have five services that are members of the service cluster. If you want NetSaint to generate a
warning alert if two or more services in the cluster and in a non-ok state or a critical alert if three or more
are in a non-ok state, tegheck_command=argument of thiservicéyou define to monitor the cluster

looks something likéhis:

check_service_cluster!2!3!/usr/local/netsaint/etc/servicecluster.cfg

The $ARG3$ macro will be replaced witlsr/local/netsaint/etc/servicecluster.afdnen the check is

made. Since this is the file from which ttleeck clusteplugin will read the names of cluster members,

you'll need to create that file and add the services that are members (one per line). The format of a service
entry is the short name of the host the service is associated with, followed by a semi-colon, and then the
service description. An example of the file contents would bellasvs:

hostl;DNSService
host2;DNSService
host3;DNSService
host4;DNSService
host5;DNSService
host6;DNSService

Monitoring Host Clusters

Monitoring host clusters is very similiar to monitoring service clusters. Obviously, the main difference is
that the cluster members are hosts and not services. In order to monitor the status of a host cluster, you
must define a service that uses theck_clusteplugin. The service shoulbt be associated with any of

the hosts in the cluster, as this will cause problems with notifications for the cluster if that host goes down.
A good idea might be to associate the service with the host that NetSaint is running on. After all, if the
host that NetSaint is running on goes down, then NetSaint isn’t running anymore, so there isn’'t anything

http://www.netsaint.org/download/alpha

you can do as far as monitoring (unless you've getdpndant monitoringosts...

Anyway, let's assume that you haveteeck_host_clustfmrommanfefined agollows:

command[check_host_cluster]=/usr/local/netsaint/libexec/check_cluster --host
lusr/local/netsaint/var/status.log $ARG1$ $ARG2$ $ARG3$

Let’'s say you have six hosts in the host cluster. If you want NetSaint to generate a warning alert if two or
more hosts in the cluster are not up or a critical alert if four or more hosts are not up, the
<check_commandargument of thgervic¢you define to monitor the cluster looks something tiks:

check _host_cluster!2!4!/usr/local/netsaint/etc/hostcluster.cfg

The $ARG3$ macro will be replaced withsr/local/netsaint/etc/hostcluster.ofghen the check is made.
Since this is the file from which theheck_clusteplugin will read the names of cluster members, you'll
need to create that file and add the short names of all hosts (as they were definefiastgefinitions
that are members (one per line). An example of the file contents woulddimas:

hostl
host2
host3
host4
host5
host6

That's it! NetSaint will periodically check the status of the host cluster and send notifications to you when
its status is degraded (assuming you've enabled notification for the service). Note thdhést]the
[definitiongof each cluster member, you will most likely want to disable notifications when the host goes
down (using thenotify_down>option). Remeber that you don’t care as much about the status of any
individual host as you do the overall status of the cluster. Depending on your network layout and what
you're trying to accomplish, you may wish to leave notifications for unreachable states enabled (using the
<notify_unreachable>option) for the hostlefinitions.

ServiceDependencies

Introduction

Beginning with release 0.0.7, NetSaint supports optional service dependencies. Service dependencies are
anadvancedeature that allow you to control the behavior of services based on the status of one or more
other services. More specifically, you can repress the execution of service checks and notifications for
services if various criteria that you specify aret.

Overview

The image below shows an example layout of service dependencies. There are a few things you should
notice:

1. A service can be dependent on one or more other services

2. A service can be dependent on services which are not associated with the same host

3. Service dependencies are not inherited

4. Service dependencies can be used to cause service execution and service notifications to fail under
different circumstances (OK, WARNING, UNKNOWN, and/or CRITICAlates)

Service Dependencies

Service A Service B
(On Host A) {On Host A)
F F Y

EXECUTION FARE URE EXECUTION FARRLURE
DPTIONS: warning, OPTIONS:

EXECUTION FAE URE unkRowh & (nane]

QPTIONS: Laknown NOTIFICATION
NOTIFICATION FARURE OPTIONS:

NOTIFICATION FAR URE DPTIONS: Warnihg, BRkRown,

FAIRL URE OPTIONS: critical critical

{hone)

Warning, Shknown

Warning, Jnknown,
cHitical

EXFCUTION FAR URE
QPTIONS: (nohe)
NOTIFICATION
FAN URE OPTIONS:
critical
EXECUTION FAR URE f}iﬁfgg‘?ﬁ FAILURE
OPTIONS: of s (noke)
NOTIFIGATION NOTIFICATION
FANR URE QPTIONS: FAIL URE OPTIONS:

Senvice F
{0On Host C)

Defining ServiceDependencies

First, the basics. You create service dependencies by dgktvigedependencyflefinitions in youfhos}

In each definition you specify tlteependenservice, the service you aependingdn, and

the criteria (if any) that cause the execution and notification dependencies to fail (these are described
later).

You can create several dependencies for a given service, but you must add ajsaparatependency|]
definition for each dependency yoreate.

http://www.netsaint.org/docs/0_0_7/images/service-dependencies.gif

In the example above, the dependency definitionSéoviceF would be defined a®llows:

servicedependency[Service F;Host C]=Service D;HoBto;
servicedependency[Service F;Host C]=Service E;HoBt;wuc
servicedependency[Service F;Host C]=Service C;HoBtw;c

How Service Dependencies Aréested

Before NetSaint executes a service check or sends notifications out for a service, it will check to see if the
service has any dependencies. If it doesn’t have any dependencies, the check is executed or the
notification is sent out as it normally would be. If the serdiceshave one or more dependencies,

NetSaint will check each dependency entrjodsws:

1. NetSaint gets the currestatug] of the service that is beirtgpendedipon

2. NetSaint compares the current status of the service that isdepegdediponagainst either the
execution or notification failure options in the dependency definition (whichever one is relevant at
the time).

3. If the current status of the service that is belagendediponmatches one of the failure options, the
dependency is said to have failed and NetSaint will break out of the dependency check loop.

4. If the current state of the service that is balegendedipondoes not match any of the failure
options for the dependency entry, the dependency is said to have passed and NetSaint will go on and
check the next dependency entry.

This cycle continues until either all dependencies for the service have been checked or until one
dependency chedkils.

* One important thing to note is that by default, NetSaint will use the most doardstate of the

service(s) that is/are being depended upon when it does the dependeny checks. If you want Netsaint to use
the most current state of the services (regardless of whether its a soft or hard state), enable the
[soft_service dependendiegtion.

Execution Dependencies

If all of the execution dependency tests for the sepassedNetSaint will execute the check of the

service as it normally would. If even just one of the execution dependencies for a service fails, NetSaint
will temporarily prevent the execution of checks for that (dependent) service. At some point in the future
the execution dependency tests for the service may all pass. If this happens, NetSaint will start checking
the service again as it normally would. More information on the check scheduling logic can Hedaund

In the example abov&erviceE would have failed execution dependenci€SafviceB is in a
WARNING or UNKNOWN state. If this was the case, the service check would not be performed and the
check would be scheduled for (potential) execution at atiater

Notification Dependencies

If all of the notification dependency tests for the serpeesedNetSaint will send notifications out for
the service as it normally would. If even just one of the notification dependencies for a service fails,
NetSaint will temporarily repress notifications for that (dependent) service. At some point in the future the

notification dependency tests for the service may all pass. If this happens, NetSaint will start sending out
notifications again as it normally would for the service. More information on the notification logic can be

foundheré

In the example abov&erviceF would have failed notification dependencieSérviceC is in a

CRITICAL state,and/orServiceD is in a WARNING or UNKNOWN stateand/orif ServiceE is in a
WARNING, UNKNOWN, or CRITICAL state. If this were the case, notifications for the service would
not be senbut.

Dependencynheritance

As mentioned before, service dependenciesaraherited. In the example above you can see that

Service F is dependent on Service E. However, it does not automatically inherit Service E’s dependencies
on Service B and Service C. In order to make Service F dependent on Service C we had to add another
service dependency definition. There is no dependency definition for Service B, so Servioe F is

dependent on Service B. In some cases the lack of inheritance means you're going to have to add some
additional dependency definitions in your config file, but I think it makes things much more flexible. For
instance, in the example above we might have good reason for not making Service F dependent on Service
B. If dependencies were automatically inherited, this would npbbsible.

Performance Data

Introduction

Starting with release 0.0.7 you now have the ability to process various types of performance data relating
to host and service checks. A description of the different types of performance data, as well as information
on how to go about processing that data is deschibkmv...

Types of PerformanceData

There are two basic categories of performance data that can be obtainéf8aint:

1. Check performancedata
2. Plugin performance data

Check performancdatais internal data that relates to the actual execution of a host or service check. This
might include things like service check latency (i.e. how "late" was the service check from its scheduled
execution time) and the number of seconds a host or service check took to execute. This type of
performance data is available for all checks that are performed. The $SEXECUTION[mBiE$can be

used to determine the number of seconds a host or service check was running and the $LATENCY$ macro
can be used to determine how "late" a service check was (host checks have zero latency, as they are
executed on an as-needed basis, rather than at regularly schethiieds).

Plugin performancelatais external data specific to the plugin used to perform the host or service check.
Plugin-specific data can include things like percent packet loss, free disk space, processor load, number of
current users, etc. - basically any type of metric that the plugin is measuring when it executes.
Plugin-specific performance data is optional and may not be supported by all plugins. As of this writing,

no plugins return performance data, although they mostly likely will in the near future. Plugin-specific
performance data (if available) can be obtained by using the $PERFOAaAS See below for more
information on how plugins can return performance data to NetSaint for inclusion in the $PERFDATA$
macro.

Performance Data Support ForPlugins

Normally plugins return a single line of text that indicates the status of some type of measurable data. For
example, the check_ping plugin might return a line of text likdahewing:

PING ok - Packet loss = 0%, RTA = 0.80 ms
With this type of output, the entire line of text is available in the $OUTHwa& ¢

In order to facilitate the passing of plugin-specific performance data to NetSaint, the plugin specification

has been expanded. If a plugin wishes to pass performance data back to NetSaint, it does so by sending the
normal text string that it usually would, followed by a pipe character (|), and then a string containing one

or more performance data metrics. Let’s take the check_ping plugin as an example and assume that it has
been enhanced to return percent packet loss and average round trip time as performance data metrics. A
sample plugin output might look likais:

PING ok - Packet loss = 0%, RTA = 0.80 ms | percent_packet_|la$s=0,80

When NetSaint seems this format of plugin output it will split the output into two parts: everything before
the pipe character is considered to be the "normal” plugin output and everything after the pipe character is
considered to be the plugin-specific performance data. The "normal" output gets stored in the $OUTPUT$
macro, while the optional performance data gets stored in the $PERFDATA$ macro. In the example
above, the $OUTPUT$ macro would contdfiNG ok - Packet loss = 0%, RTA = 0.8%' (without

quotes) and the $SPERFDATA$ macro would contaercent_packet_loss=8a=0.80" (without quotes).

Enabling Performance DataProcessing

If you want to process the performance data that is available from NetSaint and the plugins, you'll have to
enable thprocess performance datation. You're still going to have to define host and service

processing commands (described below), but this global option must be enabled for any performance data
processing to takglace.

Defining Performance Data Processin€ommands

If you want to process host performance data, you need to Usesth@erfdata commagbtion to

specify a command that should be run after every host check. The name of the command that you specify
in thehost_perfdata_commaraption must be a valjdommandefinitionin your host config file. In the
command definition, you can use gmgcrokthat are valid in host performance processimgimands.

An example command definition that simply appends host performance data (last host check time,
execution time, performance data, etc.) to a temporary text file is shown below. The various performance
data items are written to the file in tab-delimifedmat.

command[process-host-perfdata]=/bin/echo -e "$SLASTCHECK$USHOSTNAMES\tSHOSTSTATESUSHOSTATTEMPTSUSSTATETYPESUSEXECUTIONTIMEStSSOUTPUTSUSPERFDATAS" >> /tmp/host-perfdata

If you want to process service performance data, you need to (sl perfdata_commgogtion to
specify a command that should be run after every service check. The name of the command that you
specify in theservice_perfdata_commarmgbtion must be a val[dommandlefinitionin your host config

file. In the command definition, you can use [mgcrokthat are valid in service performance processing
commands.

An example command definition that simply appends service performance data (last service check time,
execution time, check latency, performance data, etc.) to a temporary text file is shown below. The various
performance data items are written to the file in tab-delinfidadat.

-e "$LASTCHECKS$\HOST! ERVICEDESC! ESTATI EATTEMPTS\SSTATETYPESUSEXECUTIONTIMES\SLATENCYS\SOUTPUTS\ISPERFDATAS" >> /tmplservice-perfdata

On a site note, if you havgsarvice perfdata_commdgudefined and you are alpbsessing oveservicep
you may way to disable tfgbsess over servigeption and make yowgervice_perfdata_commairid
double duty. Since thecsp_commanedndservice_perfdata_commarommands are both executed after
every service check, you'll cut out a bit of overhead by consolidating everything into the
service_perfdata_command

Post-Processinddptions

I’'m assuming that you’re going to want to do some post-processing of the performance data that you get
out of NetSaint. If not, why are you enabling performance data processing in tp&afie

What you do with the performance data once its out of NetSaint is completely up to you. If your
processing commands are simply writing performance data to temporary text files, you could setup
occassional cron jobs to process all the entries in those text files, squash thdmdtsdhglump them
into a database, produce graplibatever...

http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/

Using The Embedded Perlinterpreter

Introduction

Stephen Davies has contributed code that allows you to compile NetSaint with an embedded Perl
interpreter. This may be of interest to you if you rely heavily on plugins writtBerin

Stanley Hopcroft has worked with the embedded Perl interpreter quite a bit and has commented on the
advantages/disadvanges of using it. He has also given several helpful hints on creating Perl plugins that
work properly with the embedded interpreter. The majority of this documentation comes from his
comments.

It should be noted that "ePN", as used in this documentation, refers to embedded Perl NetSaint, or if you
prefer, NetSaint compiled with an embedded Peerpreter.

Advantages
Some advantages of ePN (embedded Perl NetSadhide:

® NetSaint will spend much less time running your Perl plugins because it no longer forks to execute
the plugin (each time loading the Perl interpreter). Instead, it executes your plugin by making a
library call.

® |t greatly reduces the system impact of Perl plugins and/or allows you to run more checks with Perl
plugin than you otherwise would be able to. In other words, you have less incentive to write plugins
in other languages such as C/C++, or Expect/TCL, that are generally recognised to have development
times at least an order of magnitude slower than Perl (although they do run about ten times faster also
- TCL being arexception).

e |f you are not a C programmer, then you can still get a huge amount of mileage out of NetSaint by
letting Perl do all the heavy lifting without having NetSaint slow right down. Note however, that the
ePN will not speed up your plugin (apart from eliminating the interpreter load time). If you want fast
plugins then consider Perl XSUBs (XS), oaffer you are sure that your Perl is tuned and that you
have a suitable algorithm (Benchmark.prmigaluablefor comparing the performance of Perl
languageelements).

e Using the ePN is an excellentt opportunity to learn more aRent

Disadvantages

The disadvantages of ePN (embedded Perl NetSaint) are much the same as Apache mod_perl (i.e. Apache
with an embedded interpreter) compared to a #piache:

® A Perl program that workiine with plain NetSaint mapot work with the ePN. You may have to
modify your plugins to get them toork.

Perl plugins are harder to debug under an ePN than under &pt&aint.

Your ePN will have a larger SIZE (memory footprint) than a phetSaint.

Some Perl constructs cannot be used or may behave differently than what yoexpeaid

You may have to be aware of ‘'more than one way to do it' and choose a way that seems less

attractive oobvious.

e You will need greater Perl knowledge (but nothing very esoteric or stuff about Perl internals - unless
your plugin useXSUBS).

Target Audience

® Average Perl developers; those with an appreciation of the languages powerful features without
knowledge of internals or an in depth knowledge of ttieatures.
® Those with a utilitarian appreciation rather than a great depthd#rstanding.

e |f you are happy with Perl objects, name management, data structures, and the debugger, that's
probablysufficient.

Things you should do when developing a Perl Plugin (ePN oot)

® Always always generate soroatput
® Use 'use utils’ and import the stuff it exports ($TIMEOUT %ERRORS &print_revi&support)
e Have a look at how the standard Perl plugins do their stgff

O Always exit with SERRORS{CRITICAL}, $SERRORS{OK}, etc.

O Use getopt to read command line arguments

O Manage timeouts

O Call print_usage (supplied by you) when there are no command line arguments

O Use standard switch names (eg H 'host’v&fsion’)

Things you must do to develop a Perl plugin foePN

1. <DATA> can not be used; use here documents ingead

my $data = <<DATA;
portmapper 100000
portmap 100000
sunrpc 100000
rpcbind 100000
rstatd 100001

rstat 100001

rup 100001

bATA
%prognum = map { my($a, $b) = split; ($a, $b) } split(/\n/, $data) ;

2. BEGIN blocks will not work as you expect. May be besivoid.
3. Ensure that it is squeaky clean at compile time
® use strict
® use perl -w (other switches [T notably] may not help)
® use perktc
4. Avoid lexical variables (my) with global scope as a means of passing __variable__ data into
subroutines. In fact this is __fatal___if the subroutine is called by the plugin more than once when the
check is run. Such subroutines act as 'closures’ that lock the global lexicals first value into
subsequent calls of the subroutine. If however, your global is read-only (a complicated structure for

example) this is not a problem. What Bekmnecommends you dasteagl is any of thdollowing:
® make the subroutine anonymous and call it via a codegef

turn this into

my $x=1; my$x=1;
suba{.. Process $x...} $a_cr=sub{... Process $x ... };

a; &%a_cr;
$x=2 $x=2;
a; &%a _cr;

anon closures __always__ rebind the current lexical value

e put the global lexical and the subroutine using it in their own package (as an object or a module)
® pass info to subs as references or aliases (\$lex_var or $_[n])
® replace lexicals with package globals and exclude them from 'use strict’ objections with 'use
vars gw(globall global2)’
5. Be aware of where you can get mor®rmation.

Useful information can be had from the usual suspects (the O'Reilly books, plus Damien
Conways "Object Oriented Perl") but for the really useful stuff in the right context start at Stas
Bekman’s mod_perl guide |attp://perl.apache.org/guide/

This wonderful book sized document has nothing whatsoever about NetSaint, but all about
writing Perl programs for the embedded Perl interpreter in Apache (ie Doug MacEacherns
mod_perl).

The perlembed manpage is essential for contexeaoduragement.

On the basis that Lincoln Stein and Doug MacEachern know a thing or two about Perl and
embedding Perl, their book 'Writing Apache Modules with Perl and C’ is almost certainly worth
looking at.

6. Be aware that your plugin may return strange values with an ePN and that this is likely to be caused
by the problem in item #dbove
7. Be prepared to debuga:
® having a test ePN and
® adding print statements to your plugin to display variable values to STDERR (can’'t use
STDOUT)
® adding print statements to pl.pl to display what ePN thinks your plugin is before it tries to run it
(Vi)
® running the ePN in foreground mode (probably in conjunction with the former
recommendations)
e use the 'Deparse’ module on your plugin to see how the parser has optimised it and what the
interpreter will actually get. (see 'Constants in Perl’ by Sean M. Burke, The Perl Journal, Fall
2001)
perl -MO::Depars&your_program>

http://perl.apache.org/guide/
http://perl.apache.org/guide/

8. Be aware of what ePN is transforming your plugin too, and if all else fails try and debug the
transformedrersion.

As you can see below pl.pl rewrites your plugin as a subroutine called 'hndlr’ in the package
namedEmbed::<something_related_to_your_plugin_file_name>’.

Your plugin may be expecting command line arguments in @ARGV so pl.pl also assigns @_ to
@ARGV.

This in turn gets 'eval’ ed and if the eval raises an error (any parse error and run error), the
plugin gets chuckedut.

The following output shows how a test ePN transformediiieek rpglugin before attempting

to execute it. Most of the code from the actual plugin is not shown, as we are interested in only
the transformations that the ePN has made to the plugin). For clarity, transformations are shown
in red:

package main;

use subs 'CORE::GLOBAL::exit’;

sub CORE::GLOBAL::exit { die "ExitTrap: $_[0]
(Embed::check_5frpc)”; }

package Embed::check_5frpc; sub hndir { shift(@_);

@ARGV=@_;

#! lusr/bin/perl -w

#

check_rpc plugin for netsaint
#

usage:

check_rpc host service

#

Check if an rpc serice is registered and running

using rpcinfo - $proto $host $prognum 2>&1 |";

#

Use these hosts.cfg entries as examples

#

command[check_nfs]=/some/path/libexec/check_rpc SHOSTADDRESSS$ nfs
service[check_nfs]=NFS;24x7;3;5;5;unix-admin;60;24x7;1;1;1;;check_rpc
#

initial version: 3 May 2000 by Truongchinh Nguyen and Karl DeBisschop
current status: $Revision: 1.12 $

#

Copyright Notice: GPL

#

... rest of plugin code goes here (it was removed for brevity) ...

}

9. Don't use 'use diagnostics’ in a plugin run by your production ePN. | think it causes__all__ the Perl
plugins to returrCRITICAL.

10. Consider using a mini embedded Perl C program to check your plugin. This is not sufficient to
guarantee your plugin will perform Ok with an ePN but if the plugin fails this test it will ceratinly fail
with your ePN[A sample mini ePN is included in tleentrib/ directory of the NetSaint distribution
for use in testing Perl plugins. Change to the contrib/ directory and type 'make mini_epn’ to compile
it. It must be executed from the same directory that the pl.pl file resides in (this file is distributed

with NetSaint)]

Compiling NetSaint With The Embedded Perlinterpreter

Okay, you can breathe again now. So do stduwant to compile NetSaint with the embedded Perl
interpreter?-)

If you want to compile NetSaint with the embedded Perl interpreter you need to rerun the configure script
with the addition of the-enable-embedded-peasption. If you want the embedded interpreter to cache
internally compiled scripts, add thevith-perlcacheoption as wellExample:

configure --enable-embedded-perl --with-perlcache ...other options...

Once you've rerun the configure script with the new options, make sure to recompile NetSaint. You can
check to make sure that NetSaint has been compile with the embedded Perl interpreter by executing it with
the-m command-line argument. Output from executing the command will look something like this (notice
that the embedded perl interpreter is listed in the optieason):

[netsaint@firestorm J# ./netsaint -m

NetSaint 0.0.7b7

Copyright (c) 1999-2001 Ethan Galstad (netsaint@netsaint.org)
Last Modified: 07-03-2001

License: GPL

External Data I/O

Object Data: DEFAULT
Status Data: DEFAULT
Retention Data: DEFAULT
Comment Data: DEFAULT
Downtime Data: DEFAULT
Performance Data: DEFAULT

Options

* Embedded Perl compiler (With caching)

DatabaseSupport
(MySQL and PostgreSQL)

Index

[Out with theold..]

Gettingstarted

[Compiling with MySQLsupport
[Compiling with PostgreSQBupport
[ConfigurationDirective$

[Comment dataonfiguration
|Status dataonfiguratiom

|[Retention dataonfiguration
|[Extended dataonfiguratiof

[Tabledefinition$

[Comment datéable$
|Status datéables

|[Retention datéables
|[Extended datgable$

Introduction

This will explain how to optionally compile both the core program and the CGls so thattinesly
support storage of various types of data in one or more databases. Currently only MySQL and PostgreSQL
databases are supported, although more may be supportediitutbe

Out With The Old...

Okay, before we go ahead and get into the details of the database integration stuff, you need to understand
something. The default method for storing status data, comments, etc. in NetSaint is (and probably will
continue to be) in plain old text files. The standard files used by the default external data routines include
thejstatudogd, [commentfile, and thgstate retentioifile] With the default install, extended host and service
information is not stored in its own file, butfiwstextinfol]andserviceextinfof|definitions in th¢CGJ]
|configurationfile]

Assuming you plan on using a database to store some or all external data, a few things are obviously going
to change. Data will no longer be stored in text files, but rather in one or more databases. Since | don't feel
like rewriting a lot of documentation, you're going to have to make a mental transition. You'll need to
realize that status information is no longer stored in the status log, but rather in a few tables in a database
somewhere. Same thing applies for other types of external data (comments, retention information, and
extended hoshformation).

Getting Started

First off, | assume you've gofdySOL] or[PostgreSQJdatabase server up and running on your network
somewhere and you've got the appropriate client libraries installed on the same machine where you're
going to compile and run NetSaint. I'm also assumimg you're familiar with creating databases and tables
and managing accounts and security in the particular database system(s) you’re going to use. If you're not,
go out and learn before you attempt to compile NetSaint with databppert.

Very Important Note: Once you (re)run the configure script to add support for database storage (as will
be described below), make sure you recontyolén the core program arall the CGls (using theake all
command)!!

Compiling With MySQL Support

In order to support storage of various types of data in MySQL, you're going to have to supply one or more
options to the configurscript.

You have a few options here. First, you need to decide what data you want to keep in MySQL and what (if
any) you want to leave in the older format (text files). Use the table below to determine what options

you'll need to supply to the configure script once you determine your ridetds. MySQL support for

storage of object data (service, host, and command definitions, etc) is sopyetted.

Configure Script

Option Comments

Data Type

This will compile in MySQL support for all types of external
data (comment data, status data, retention data, and extended

data). Support for object data (service and host definitions, ¢tc.)
is as of yehon-existent.

All types | --with-mysql-xdata

Comment - with-mvsal-comments This will compile in MySQL support for comment data (it wil
data ysa replace the standambmmentfile)
Status —with-mvsal-status This will compile in MySQL support for status data (it will
data ysq replace the standagiatugog)
Retention . : This will compile in MySQL support for retention data (it will
data with-mysql-retention replace the standatiate retentiofile)

This will compile in MySQL support for extended data (it wil
Extended . . . - .
data --with-mysql-extinfo replace the standastextinfo[Jandserviceextinfol]

definitions in the CGlI confidjle)

Compiling With PostgreSQL Support

In order to support storage of various types of data in PostgreSQL, you're going to have to supply one or
more options to the configuseript.

http://www.mysql.com/
http://www.postgresql.org/

You have a few options here. First, you need to decide what data you want to keep in PostgreSQL and
what (if any) you want to leave in the older format (text files) or possibly in MySQL. Use the table below
to determine what options you’ll need to supply to the configure script once you determine your needs.
Note: PostgreSQL support for storage of object data (service, host, and command definitions, etc) is not
yet supported.

Configure Script

Option Comments

Data Type

This will compile in PostgreSQL support for all types of extefnal
data (comment data, status data, retention data, and extendgd

data). Support for object data (service and host definitions, gtc.)
is as of yehon-existent.

All types | --with-pgsgl-xdata

Comment --with-pasal-comments This will compile in PostgreSQL support for comment data (i
data Pgsq will replace the standagbmmentile))
Status - -with-pasal-status This will compile in PostgreSQL support for status data (it will
data Pgsq replace the standagtiatudog)
Retention --with-pasal-retention This will compile in PostgreSQL support for retention data (it
data Pgsq will replace the standalstate retentiofile)

This will compile in PostgreSQL support for extended data (it
Extended : . . . : :
data --with-pgsql-extinfo will replace the standaffabstextinfo[Jandserviceextinfol]

definitions in the CGlI confidjle)

Configuration Directives

Once you decide what types of external data you want to store in one or more databases, you'll have to

add some configuration directives to [lesourcdile] and/or th¢CGI configfile] Here wego...

Configuration Directives For CommentData: (--with-mysgl-commentsr --with-pgsqgl-comments
options):

In the|CGlI configfile} you need to add the following directives (ttmenment_filedirectivgin themair]
[configurationfile]is no longewused)...

xcddb_hostdatabase host
xcddb_portdatabase_port
xcddb_usernamefatabase_user
xcddb_passworddatabase password
xcddb_databasetatabase name

These are fairly self-explanatory. They are used by the CGls to identify the address of your database
server (and the port it is running on), the name of the database in which the comments should be stored,
and the username/password that should be used when connecting to the databse server. NetSaint will
assume that two tables (as defifnedd exist in this database for storage of comment dhaite: The

CGils only need read access to the comments, so this user should only have SELECT privileges on the

commentables.

In alresourcdile] you need to add the followirdirectives...

xcddb_hostdatabase host
xcddb_portelatabase_port
xcddb_usernameafatabase_user
xcddb_passworddatabase password
xcddb_databasetatabase name
xcddb_optimize_datd6/1]

There directives are identical to the ones you added to the CGI config file, except these are used by the
NetSaint process. The database user you specify here needs to have SELECT, INSERT, UPDATE, and
DELETE privileges on the comment tables. The CGls do not attempt to read the contents of any resource
files, so you can set restrictive permissions on them and make sure that no one other than the NetSaint
process can read them. Txeeldb_optimize_dataption will force NetSaint to optimize data in the

comment tables when it starts/restarts. If you're using PostgreSQL DB support for comments, this means
that a VACUUM is run on the comment déshles.

Configuration Directives For StatusData: (--with-mysql-statusr --with-pgsql-statusptions):

In the[CGI configfile] you need to add the following directives (ghatus_filedirectivéin thelmair]
[configurationfile] is no longeused)...

xsddb_hostdatabase_host
xsddb_portdatabase_port
xsddb_usernametatabase_user
xsddb_passwordfatabase_password
xsddb_databasetatabase_name

These are fairly self-explanatory. They are used by the CGls to identify the address of your database
server (and the port it is running on), the name of the database in which the status data should be stored,
and the username/password that should be used when connecting to the database. NetSaint will assume
that three tables (as defirfadrd exist in this database for storage of status thate: The CGls only

need read access to the status data, so the database user you specify here should only have SELECT
privileges on the statuables.

In alresourcdile] you need to add the followirdirectives...

xsddb_hostdatabase host
xsddb_portdatabase_port
xsddb_usernamelatabase user
xsddb_passwordiatabase password
xsddb_databaselatabase _name
xsddb_optimize_datd6/1]
xsddb_optimize_intervabeconds

These directives are used by the NetSaint process instead of the CGls. The only difference between these
directives and those found in the CGI config file is the fact that the database user you specify here needs to
have SELECT, INSERT, UPDATE, and DELETE privileges on the status tables. The CGls do not attempt
to read the contents of any resource files, so you can set restrictive permissions on them and make sure
that no one other than the NetSaint process can read thexsddi® optimize_dataption will force

NetSaint to periodically optimize data in the status tables. The frequency of optimization is determined by
the number of seconds specified by xeddb_optimize_intervalption. If you’re using PostgreSQL DB

support for status data, this means that a VACUUM is run on the statualiata

Configuration Directives For Retention Data: (--with-mysqg|-retentioror --with-pgsql-retention
options):

In alresourcdile] you need to add the following directives (gtate_retention_fildirectivéin thelmair]
is no longewused)...

xrddb_hostdatabase host
xrddb_port=latabase port
xrddb_usernametatabase user
xrddb_passworddatabase password
xrddb_databasetatabase name
xrddb_optimize_datd6/1]

These are fairly self-explanatory. They are used by the NetSaint process to identify the address of your
database server (and the port it is running on), the name of the database in which the retention data should
be stored, and the username/password that should be used when connecting to the database. NetSaint will
assume that three tables (as deflned) exist in this database for storage of retention data. The user you
specify here needs to have SELECT, INSERT, UPDATE, and DELETE privileges on the retention tables.
The CGls do not attempt to read the contents of any resource files, so you can set restrictive permissions
on them and make sure that no one other than the NetSaint process can read them. The
xrddb_optimize_dataption will force NetSaint to optimize data in the retention tables when it

starts/restarts. If you're using PostgreSQL DB support for retention data, this means that a VACUUM is

run on the retention datables.

Configuration Directives For ExtendedData: (--with-mysql-extinfar --with-pgsql-extinfaptions):

In thelCGI configfile] you need to add the following directives (tastextino[|andserviceextinfol]
directives in thEGI config file are no longaised)..

xeddb_hostdatabase host
xeddb_portdatabase_port
xeddb_usernamefatabase user
xeddb_passwordiatabase password
xeddb_databasemtabase name

These are fairly self-explanatory. They are used by the CGls to identify the address of your database
server (and the port it is running on), the name of the database in which the extended data is stored, and
the username/password that should be used when connecting to the database. NetSaint will assume that
two tables (as defindlierd exists in this database for storage of extended data. The user you specify here

should only have SELECT privileges on the extendedtadies.

Table Definitions

In order to read from or write to a database, you first have to create it and setup some tables to hold your
data. Note: If you are storing more than one type of external data in databases, you could create separate
databases for each type of data (comments, status info, etc.) You could also keep everything in a single
database (different data is kept in different tables). In your database(s) you're going to have to setup the
appropriate table(s) so NetSaint can actually read/write data.

Important : Scripts for creating tables for all types of external data for both MySQL and PostgreSQL
databases can be found in tdoatrib/databasedirectory of thelistribution.

Comment DataTables

There are two tables (nambdstcommentsandservicecommentsyou need to create in order to store
comments in a database. One of the tables is used to store host comments and the other for service
comments. The CGls only need SELECT rights on these tables, while the main NetSaint process needs
SELECT, INSERT, UPDATE, and DELET&ivileges.

Status DataTables

There are three tables (nanmdgramstatus, hoststatus andservicestatug you need to create in order

to store status data in a database. One of the tables is used to store program status data, one for host status
data, and another for service status data. The CGls only need SELECT rights on these tables, while the
main process needs SELECT, INSERT, UPDATE, and DELRTHeges.

Retention DataTables

There are three tables (nanmdgramretention, hostretention, andserviceretentior) you need to

create in order to store retention data in a database. One is used to store program data, one for host data,
and another for service data. The main process needs SELECT, INSERT, UPDATE, and DELETE
privileges on these tables. The C@tsnot access these tablesadit

Extended DataTables

There are two tables (nambdstextinfo andserviceextinfg you need to create in order to store extended

data in a database. One table is used to store extended host information and the other for extended service
information (used by the CGIs). The CGls need SELECT privileges on these tables. The main NetSaint
processioesnot access these tablesadit

Portsentry Integration

Introduction

This example explains how to easily generate alerts in NetSaint for port scan that are detected by Psionic
Software’dPortsentrjsoftware. These directions assume that the host which you are generating alerts for
(i.e. the host you are running Portsentry on) is not the same host on which NetSaint is running. If you want
to generate alerts on the same host that NetSaint is running you will need to make a few modifications to
the examples | provide. Also, | am assuming that you having installpg¢adaemohon your

monitoring server and the nsca cli¢s¢nd_nscaon the machine that you are running Portseorry

Defining The Service

First off you're going to have to defingsarvicéin yourfhost configuratiorile] for the port scan alerts.
Assuming that the host that the alerts are originating from is dakstorm, a sample service definition
might look something lik¢his:

service[firestorm]=Port Scans;1;none;1;1;1;security-admins;120;24x7;1;1;1;;check_ping

Important things to note are the fact that this service hasthgle option enabled. We want this option
enabled because we want a notification to be generated for every alert that comes in. Also of note is the
fact that the timeperiod name specified in¢heck_periodption refers to imeperiodidefinition tha

thas no valid times. This means that the service will never be actively checked - all alert information will
have to be sent in passively by thecaclient on thefirestorm host.

Configuring Portsentry

In order to get Portsentry to send an alert to your monitoring box when it detects a port scan, you'll need
to define a command for thdLL_RUN_CMDoption in the Portsentry config fil@ortsentry.conf It
should look something like tHellowing:

KILL_RUN_CMD="/ust/local/netsaint/libexec/eventhandlers/handle_port_scan $TARGET$ $PORT$"

This line assumes that there is a script cadil@adle port_scain the
{usr/local/netsaint/libexec/eventhandledivectory orfirestorm. The directory and script name can be
changed to whatever yauant.

Writing The Script

The last thing you need to do is write tiendle_port_scascript onfirestorm that will send the alert
back to the monitoring host. It might look something tikis:

#1/bin/sh

Arguments:
$1 = target
$2 = port

Submit port scan to NetSaint
lusr/local/netsaint/libexec/eventhandlers/submit_check_result firestorm "Port Scans" 2 "Port scan from $1 on port $2. Host has been firewalled.”

http://www.psionic.com/abacus/portsentry

Notice that thédhandle_port_scascript calls thesubmit_check_resulo actually send the alert back to the
monitoring host. Assuming your monitoring host is cafteshitor, thesubmitcheck_resulscript might
look like this (you'll have to modify this to specify the proper location oktirad_nscg@rogram on
firestorm):

#!/bin/sh

Arguments

$1 = name of host in service definition

$2 = name/description of service in service definition
$3 = return code

$4 =output

/bin/echo -e "$1\t$2\t$3\t$4\n" | /usr/local/netsaint/send_nsca monitor -c /usr/local/netsaint/send_nsca.cfg
Finishing Up

You've now configured everything you need to, so all you have to do is restpdrteentryprocess on
firestorm and restart NetSaint on your monitoring server. That's it! When the Portsentry software on
firestorm detects a port scan, you should be getting alerts in NetSaint. The plugin output for the alert will
look something like théllowing:

Port scan from 24.24.137.131 on port 21. Host has been firewalled.

TCP Wrapper Integration

Introduction

This example explains how to easily generate alerts in NetSaint for connection attempts that are rejected
by TCP wrappers. These directions assume that the host which you are generating alerts for (i.e. the host
you are using TCP wrappers on) is not the same host on which NetSaint is running. If you want to
generate alerts on the same host that NetSaint is running you will need to make a few modifications to the
examples | provide. Also, | am assuming that you having installdusteglaemofon your monitoring

server and the nsca cligisend_nschaon the machine that you are generating TCP wrapper filaris

Defining The Service

First off you're going to have to defingsarvicéin yourfhost configuratiorile] for the TCP wrapper alerts.
Assuming that the host that the alerts are originating from is dakstorm, a sample service definition
might look something lik¢his:

service[firestorm]=TCP Wrappers;1;none;1;1;1;security-admins;120;24x7;1;1;1;;check_ping

Important things to note are the fact that this service hasthgle option enabled. We want this option
enabled because we want a notification to be generated for every alert that comes in. Also of note is the
fact that the timeperiod name specified in¢heck_periodption refers to imeperiodidefinition tha

thas no valid times. This means that the service will never be actively checked - all alert information will
have to be sent in passively by thecaclient on thefirestorm host.

Configuring TCP Wrappers

Now you're going to have to modify thetc/hosts.denfile on the host callefirestorm. In order to have
the TCP wrappers send an alert to the monitoring host whenever a connection attempt is denied, you'll
have to add a line similiar to tellowing:

ALL: ALL: RFC931.: twist (/usr/local/netsaint/libexec/eventhandlers/handle_tcp_wrapper %h %d) &

This line assumes that there is a script cdil@adle_tcp_wrappein the
lusr/local/netsaint/libexec/eventhandledsfectory onfirestorm. The directory and script name can be
changed to whatever yaouant.

Writing The Script

The last thing you need to do is write tiendle_tcp wrappescript onfirestorm that will send the alert
back to the monitoring host. It might look something tikis:
#!/bin/sh

lusr/local/netsaint/libexec/eventhandlers/submit_check_result firestorm "TCP Wrappers" 2 "Denied $2-$1" > /dev/null 2> /dev/null

Notice that théhandle _tcp_wrappescript calls thesubmit_check_resustcript to actually send the alert
back to the monitoring host. Assuming your monitoring host is callauitor, thesubmitcheck_result
script might look like this (you'll have to modify this to specify the proper location afehd _nsca

program orfirestorm):

#!/bin/sh

Arguments

$1 = name of host in service definition

$2 = name/description of service in service definition
$3 = return code

$4 =output

/bin/echo -e "$1\t$2\t$3\t$4\n" | /usr/local/netsaint/send_nsca monitor -c /usr/local/netsaint/send_nsca.cfg
Finishing Up

You've now configured everything you need to, so all you have to do is restaréttiprocess on

firestorm and restart NetSaint on your monitoring server. That's it! When the TCP wrapdeestorm
deny a connection attempt, you should be getting alerts in NetSaint. The plugin output for the alert will
look something like théollowing:

Denied sshd2-sdn-ar-002mnminnP321.dialsprint.net

UCD-SNMP (NET-SNMP) Integration

Note: NetSaint is not designed to be a replacement for a full-blown SNMP management application like
HP OpenView ofOopenNM$ However, you can set things up so that SNMP traps received by a host on
your network can generate alerts in NetSaint. Hérels...

Introduction

This example explains how to easily generate alerts in NetSaint for SNMP traps that are received by the
[UCD-SNMHBsnmptrapddaemon. These directions assume that the host which is receiving SNMP traps is
not the same host on which NetSaint is running. If your monitoring box is the same box that is receiving
SNMP traps you will need to make a few modifications to the examples | provide. Also, | am assuming
that you having installed tfrescadaemofon your monitoring server and the nsca cligend_nscpaon

the machine that is receiving SNM@ps.

For the purposes of this example, | will be describing how | setup NetSaint to generate alerts from SNMP
traps received by the ArcServe backup jobs running on my Novell servers. | wanted to get notified when
backups failed, so this worked very nicely for me. You'll have to tweak the examples in order to make it
suit yourneeds.

Defining The Service

First off you're going to have to defingsarvicéin yourjhost configuratiorile] for the SNMP traps (in this
example, | am defining a service for ArcServe backup jobs). Assuming that the host that the alerts are
originating from is calleshovellserver, a sample service definition might look something ths:

service[novellserver]=ArcServe Backup;1;none;1;1;1;novell-backup-admins;120;24x7;1;1;1;;check_ping

Important things to note are the fact that this service hasothtle option enabled. We want this option
enabled because we want a notification to be generated for every alert that comes in. Also of note is the
fact that the timeperiod name specified in¢heck_periodption refers to imeperiodidefinition tha

thas no valid times. This means that the service will never be actively checked - all alert information will
have to be sent in passively by tiecaclient on the SNMP management host (in my example, it will be
calledfirestorm).

ArcServe and Novell SNMPConfiguration

In order to get ArcServe (and my Novell server) to send SNMP traps to my management host, | had to do
thefollowing:

1. Modify the ArcServe autopilot job to send SNMP traps on job failures, successes, etc.

2. Edit SYS:\ETC\TRAPTARG.CFG and add the IP address of my management host (the one receiving
the SNMP traps)

3. Load SNMP.NLM

4. Load ALERT.NLM to facilitate the actual sending of the SNiviips

http://www.opennms.org/
http://net-snmp.sourceforge.net/

SNMP _Management HostConfiguration

On my Linux SNMP management hd@testorm), | installed thJCD-SNMR (NET-SNMP) software.
Once the software was installed | had to dofdfiewing:

1. Install the ArcServe MIBs (included on the ArcServe installation CD)

2. Edit the snmptrapd configuration fi{getc/snmp/snmptrapd.cortf) define a trap handler for
ArcServe alerts. This is detailed below.

3. Start thesnmptrapddaemon to listen for incoming SNMRps

In order to have thenmptrapddaemon route ArcServe SNMP traps to our NetSaint host, we've got to
define a traphandler in thetc/snmp/snmptrapd.cofifie. In my setup, the config file looked something
like this:

ArcServe SNMP Traps
HEIHHHH S R

Tape format failures
traphandle ARCserve-Alarm-MIB::arcServetrap9 /ust/local/netsaint/libexec/eventhandlers/handle-arcserve-trap 9

Failure to read tape header
traphandle ARCserve-Alarm-MIB::arcServetrap10 /ust/local/netsaint/libexec/eventhandlers/handle-arcserve-trap 10

Failure to position tape
traphandle ARCserve-Alarm-MIB::arcServetrapl1 /usr/local/netsaint/libexec/eventhandlers/handle-arcserve-trap 11

Cancelled jobs
traphandle ARCserve-Alarm-MIB::arcServetrap12 /usr/local/netsaint/libexec/eventhandlers/handle-arcserve-trap 12

Successful jobs
traphandle ARCserve-Alarm-MIB::arcServetrap13 /usr/local/netsaint/libexec/eventhandlers/handle-arcserve-trap 13

Imcomplete jobs
traphandle ARCserve-Alarm-MIB::arcServetrap14 /usr/local/netsaint/libexec/eventhandlers/handle-arcserve-trap 14

Job failures
traphandle ARCserve-Alarm-MIB::arcServetrap15 /usr/local/netsaint/libexec/eventhandlers/handle-arcserve-trap 15

This example assumes that you havesa/local/netsaint/libexec/eventhandledifectory on your SNMP
mangement host and that th@ndle-arcserve-tragcript exists there. You can modify these to fit your
setup. Anyway, thbandle-arcserve-tragcript on my management host looked somethinglile

#!/bin/sh

Arguments:
$1 = trap type

First line passed from snmptrapd is FQDN of host that sent the trap
read host

Given a FQDN, get the short name of the host as it is setup in NetSaint
hostname="unknown"
case $host in
novellserver.mylocaldomain.com)
hostname="novellserver"

nt.mylocaldomain.com)
hostname="ntserver"

esac

Get severity level (OK, WARNING, UNKNOWN, or CRITICAL) and plugin output based on trape type

http://net-snmp.sourceforge.net/

state=-1
output="No output”
case $1in

failed to format tape - critical

11)
output="Critical: Failed to format tape"
state=2

failed to read tape header - critical

10)
output="Critical: Failed to read tape header"
state=2

failed to position tape - critical

11)
output="Critical: Failed to position tape"
state=2

backup cancelled - warning

12)
output="Warning: ArcServe backup operation cancelled"
state=1

backup success - ok

13)
output="0k: ArcServe backup operation successful"
state=0

backup incomplete - warning

14)
output="Warning: ArcServe backup operation incomplete"
state=1

backup failure - critical

15)
output="Critical: ArcServe backup operation failed"
state=2

esac

Submit passive check result to monitoring host
Jusr/local/netsaint/libexec/eventhandlers/submit_check_result $hostname "ArcServe Backup" $state "$output”

exit 0

Notice that théhandle-arcserve-tragcript calls thesubmit_check resudicript to actually send the alert
back to the monitoring host. Assuming your monitoring host is callauitor, thesubmitcheck_result
script might look like this (you'll have to modify this to specify the proper location afehd _nsca
program on your managememist):

#1/bin/sh

Arguments

$1 = name of host in service definition

$2 = name/description of service in service definition
$3=return code

$4 =output

/binfecho -e "$1\t$2\t$3\t$4\n" | /usr/local/netsaint/send_nsca monitor -c /ust/local/netsaint/send_nsca.cfg

Finishing Up

You've now configured everything you need to, so all you have to do is restart the NetSaint on your
monitoring server. That's it! You should be getting alerts in NetSaint whenever ArcServe jobs falil,
succeedetc.

NetSaint DeveloperDocumentation

Version 0.0.6
Last Updated: July 30t2000

Plugin Development

Plugin theoryj
|Guidelines for plugin development

Standard File Formats

Statusfile
Commentfile
[State retentionfile|

External Data API

Overvie

|Externa| status data (XSD)overview
[External comment data (XCD)overview
[External object data (XOD) overview]

:

Status File Format

Introduction

In order to give external applications (such agafad) access to the current host and service status
information in NetSaint, all status information is saved to the file specified pgahes filgoption in the

main config file. External applications can read the contents of this file to determine the current status of
any monitored host or service. External applicatsimsuldnot write anything to the status file. NetSaint

does not read the status file to determine current service and host information - it is simply provided as a
means for third-party apps to access the internal status information in anaasy.

File Format

The status file contains three types of entries: a program entry, one or more host status entries, and one or
more service status entries. The format for each type of entry it desoelosd

Program Entry Format:

L<timestama|9‘;1

OGRAM;<start_time>;<nets: <daemon_mode>;<program_mode>;<last_mode_change>;<last_command_check>;<last_log_rotation>;<executing_service_checks>;<accept_passive_service_checks>;<enable_event_handlers>;<obsess_over_services>;<enable_flap_detection>

where...

® timestamp is the time in time_t format (seconds since UNIX epoch) that the program entry was last
updated.

e dtart_timeis the time in time_t format (seconds since UNIX epoch) that NetSaint was last (re)started.

netsaint_pid is the PID (process ID) of the NetSaint process.

e daemon_mode in an integer that indicates whether or not NetSaint is running as a daemon. If this
value is 1, NetSaint is running in daemon mode. If this value is 0, NetSaint is running as a normal
(foreground or background) process.

e program_mode a string which identifies whigirogrammodéNetSaint is currently in. If this string is
"ACTIVE", NetSaint is in active mode. If this string is "STANDBY", NetSaint is in standby mode.

e |ast_mode_change is the time in time_t format (seconds since UNIX epoch) when thpriagtam
[modéchange occurred.

® |ast_ command_check is the time in time_t format (seconds since UNIX epoch) that NetSaint last
checked fofexternalcommandsA value of zero means that NetSaint has not checked for external
commands since it was last (re)started.

® |ast log_rotation is the time in time_t format (seconds since UNIX epoch) that NetSaint last rotated
thejmain Togfile] A value of zero means that the log file has not been rotated since NetSaint was last
(re)started.

® execute service checksin an integer that indicates whether or not NetSaint is actively executing
service checks. Values: O=checks are *not* being executed, 1=checks are being executed.

® accept passive service checksin an integer that indicates whether or not NetSaint is accepting
passive service checks. Values: O=passive service checks are *not* being accepted, 1=passive checks
are being accepted.

e enable event_handlersin an integer that indicates whether or not host and service event handlers are

enabled. Values: O=event handlers are *not* enabled, 1=event handlers are enabled.

obsess over_servicesin an integer that indicates whether or not is running "obsessing" over service
check results and runningpasessive service check processmnmang Values: 0O=Netsaint is *not*
obsessing, 1=NetSaint is obsessing.

enable flap detection in an integer that indicates whether or not flap detection is enabled. Values:
O=flap detection is *not* enabled, 1=flap detectioensbled.

Host StatusFormat:

[<timestamp>] HOST,

,,,

where...

timestamp is the time in time_t format (seconds since UNIX epoch) that the host status record was
last updated.

host_name is the short name of the host (as defined ifhthegt configuratioriile) that the state
information corresponds to.

dtate is a string that indicates the current state of the host. Values include "PENDING", "UP",
"DOWN", and "UNREACHABLE".

last_check is the time in time_t format (seconds since UNIX epoch) that the host was last checked (or
its current state was assumed).

last_state change is the time in time_t format (seconds since UNIX epoch) that the host last
experienced a hard state change.

problem_has been_acknowledged is an integer indicating whether or not this host problem has been
acknowledged. If the host is UP, or it is DOWN or UNREACHABLE and has not been
acknowledged, this is set to 0. If this host is DOWN or UNREACHABLE and the problem has been
acknowledged, this is set to 1.

time_up is the number of seconds (since monitoring began) that the host has been in an UP state.
time_down is the number of seconds (since monitoring began) that the host has been in a DOWN
state.

time_unreachable is the number of seconds (since monitoring began) that the host has been in an
UNREACHABLE state.

last_notification is a timestamp in time_t format (humber of seconds since UNIX epoch) that
indicates when the last notification for this host was sent out. If no notifications have been sent out
(or if the host is UP), this value is set to zero.

current_notification_number is an integer representing the number of notifications that have been
sent out about this host problem. If no notifications have been sent out since the host last changed
state (of if it is in an UP state), this value is set to zero.

notifications_enabled is an integer that indicates whether or not notifications for this host are
enabled. Values: O=notifications are *not* enabled, 1=notifications are enabled.
event_handler_enabled is an integer that indicates whether or not the event handler for this host are
enabled. Values: O=event handler is *not* enabled, 1=event handler is enabled.

checks enabled is an integer that indicates whether or not checks this host are enabled. Values:
O=checks are *not* enabled, 1=checks are enabled.

flap_detection_enabled is an integer that indicates whether or not flap detection is enabled for this
host. Values: O=flap detection is *not* enabled, 1=flap detection is enabled.

is_flapping is an integer that indicates whether or not this host is currently "flapping”. Values: O=the
host is *not* flapping, 1=the host is flapping.

percent_state changeis an floating point number indicating the percent change in state (as described
in thefflappingdocumentatiopfor this host.

scheduled_downtime_depth is an integer that indicates the current "depth" of scheduled downtime
that this host is in.

plugin_output is the output from the last host chetdxt)

Service Statug-ormat:

[<timestamp>] SERVICE,

where...

timestamp is the time in time_t format (seconds since UNIX epoch) that the service status entry was
last updated.

host_name is the short name of the host that this service is associated with.

svc_description is the description of the service (as defined inhth& configuratioriile) that the

state information corresponds to. Together hth&t namendsvc_descriptioriields uniquely

identify a service definition.

state is string indicating the current state of the service. Values include "OK", "UNKNOWN",
"WARNING", "CRITICAL", "RECOVERY", "UNREACHABLE", and "HOST DOWN?". A value of
"RECOVERY" indicates that the service is in an OK state, but just recovered from a non-OK state.
Values of "UNREACHABLE" and "HOST DOWN" indicate that the host that the service is
associated with is either down or unreachable.

current_attempt is an integer representing the current service check attempt number. This value will
be set to 1 if the host that the service is associated with is either down or unreachable.
max_attempts is an integer representing the maximum number of check attempts for this service.
state_typeis a string indicating what type of state the service is currently in. Values include "SOFT"
and "HARD".

last_check is the time in time_t format (seconds since UNIX epoch) that the service was last checked.
next_check is the time in time_t format (seconds since UNIX epoch) that the service is next
scheduled to be checked.

check_typeis a string indicating what type of service check this was. Values include "ACTIVE" and
"PASSIVE".

checks enabled is an integer representing whether or not checks for this service are enabled. Values:
O=checks are *not* enabled, 1=checks are enabled.

accept_passive_checks is an integer representing whether or not passive checks are being accepted
for this service. Values: O=passive checks are *not* being accepted, 1=passive checks are being
accepted.

event_handler_enabled is an integer representing whether or not the event handler for this service is
enabled. Values: O=event handler is *not* enabled, 1=event handler is enabled.

passive_checks accepted is an integer representing whether or not passive checks are being accepted
for this service. If this value is 1, they are being accepted. If this value is 0, passive checks are not
being accepted.

last_state changeis the time in time_t format (seconds since UNIX epoch) that the service last had a

hard state change.

problem_has been_acknowledged is an integer indicating whether or not this service problem has
been acknowledged. If the service is in an OK state, or it is in a non-OK state and has not been
acknowledged, this is set to 0. If this service is in a non-0K state and the problem has been acknowledged,
this is set to 1.

last_hard_state is a string that indicates the last hard state of the service. Values include "OK",
"UNKNOWN?", "WARNING", and "CRITICAL".

time_ok is the number of seconds that the service has been in an OK state.

time_warning is the number of seconds that the service has been in a WARNING state.
time_unknown is the number of seconds that the service has been in an UNKNOWN state.
time_critical is the number of seconds that the service has been in a CRITICAL state.
last_notification is a timestamp in time_t format (humber of seconds since UNIX epoch) that
indicates when the last notification for this service was sent out. If no notifications have been sent out or if
the service is currently in an OK state, this value is set to zero.

current_notification_number is an integer representing the number of notifications that have been
sent out about this service problem. If no notifications have been sent out since the service last changed
state (of if it is in an OK state), this value is set to zero.

notifications_enabled is an integer that indicates whether or not notifications for this service have
been enabled. Values: O=notifications are *not* enabled, 1=notifications are enabled.

check latency is an integer indicating the number of seconds that the service check lagged behind its
scheduled execution time (actual time of execution - scheduled time of execution = latency)
execution_time is an integer indicating the number of seconds that this service check took to execute
flap_detection_enabled is an integer that indicates whether or not flap detection is enabled for this
service. Values: O=flap detection is *not* enabled, 1=flap detection is enabled.

is flapping is an integer that indicates whether or not this service is currently "flapping". Values:
O=the service is *not* flapping, 1=the service is flapping.

percent_state changeis an floating point number indicating the percent change in state (as described
in thefflappingdocumentatiopfor this service.

scheduled_downtime_depth is an integer that indicates the current "depth" of scheduled downtime
that this service is in.

plugin_output is the output from the last service chéikt)

Comment File Format

Introduction

In order to help share information among administrators, techs, etc., NetSaint allows comments to be
added to all hosts and services that are being monitored. The comments are stored in the file specified by

thelcomment filgdirective in the main configuratidile.

It should be noted that NetSaint "cleans" the comment file each time it restarts. During the cleaning
process, NetSaint will remove all comments that are not marked as being persistent or that do not
correspond to valid hosts or services that you have defined, and it will re-number all cdBsnent

Adding Comments

If you wish to use or write an external application that adds comments to hosts or services, yawshould
write comments directly to the comment file. Instead, usé&bie_SvVC_COMMENT and
ADD_HOST_COMMENT [externaicommandsThe commands should be written to[e@xéernd|

NetSaint will periodically scan the external command file and process any commands it
finds in there.

Deleting Comments

Similiarly, if you want to delete one or more comments from the command file, use the

DEL_SVC COMMENT, DEL_HOST_COMMENT, DEL_ALL_SVC COMMENTS, or
DEL_ALL_HOST_COMMENTS external commands. Dwt modify the contents of the comment file
yourself!

File Format

The comment file contains two types of entries: host comments and service comments. The format for
each type of comment it describeelow.

Host CommentFormat:
[<timestamp>] HOST_COMMENT;<id>;<host_name>;<persistent>;<author>;<comment>
where...

® timestamgs the time in time_t format (seconds since UNIX epoch) that the comment was entered by
the user.

® id is a comment identification number which is unique among other host and service comments. This
number is generated by NetSaint and cannot be specified by the user.

® host_namés the short name of the host (as defined ifhtis configuratioriile) that the comment is
associated with.

e persistents a flag which indicated whether the comment is persistent or not. Persistent comments
survive program restarts, while non-persistent comments are deleted when NetSaint is restarted. A
value of 0 indicates that the comment is non-persistent, while a value of 1 indicates that it is

persistent.
authoris a text field that contains the name of the person who entered the comment.
comments a text field that contains the actaamment.

Service CommentFormat:

[<timestamp>]
SERVICE_COMMENT;<id>;<host_name>;<svc_description>;<persistent>;<author>;<comment>

where...

® timestamps the time in time_t format (seconds since UNIX epoch) that the comment was entered by
the user.

® id is a comment identification number which is unique among other host and service comments. This
number is generated by NetSaint and cannot be specified by the user.

® host_namés the short name of the host that the service is associated with.

® svc_descriptiois the description of the service (as defined inhhgt configuratioriile) that the
comment is associated with. Togetherhlbst _namendsvc_descriptioruniquely identiry a
particular service.

e persistenis a flag which indicated whether the comment is persistent or not. Persistent comments
survive program restarts, while non-persistent comments are deleted when NetSaint is restarted. A
value of 0 indicates that the comment is non-persistent, while a value of 1 indicates that it is
persistent.

e authoris a text field that contains the name of the person who entered the comment.

® comments a text field that contains the actaamment.

State Retention File Format

Introduction

In order to preserve host and service state information (current status, state time statistics, etc.) between
program restarts, users can opt to enable the state retention feature by (reit@gnthstate informatipn

option in the main config file. If this option is enabled, state retention information is stored in the file
specified by thstate retention_fi|eirective in the main configuration file. Immediately before shutting
down (or restarting) NetSaint will write all current host and service state information to the retention file.
Upong restarting, NetSaint will read the information stored in the retention file, initialize host and service
information, and delete tHie.

At any time while NetSaint is running, you can have it save service and host state information, by using
the SAVE_STATE_INFORMATI(&kternalcommangl You can also force NetSaint to read in previously
save state information by using READ_STATE_INFORMATIObbmmand, although this is not
recommend, as the current state information that NetSaint has will be replaced with whatever is stored in
the state retentiofile.

It should be noted that NetSaint will only save state information for service and hosts that have been
checked at the time the file is written. Also, NetSaint will only save thipdadstatg¢for the host or
service.

File Format

The state retention file contains four types of entries: a creation timestamp, program state information,
host state information and service state information. The format for each type of entry it ddsddied

Creation Time Format:
CREATED: <timestamp>
where...

® timestamps the time in time_t format (seconds since UNIX epoch) that the state information was
saved.

Program Information Format:

PROGRAM:

<program_mode>;<execute_service_checks>;<accept_passive_service_checks>;<enable_event_handlers>;<obsess_over_services>;<enable_flap_detection>
where...

e program_mode is an integer that represents the [fasgrammodégthat NetSaint was in. Values:
O=standby mode, 1=active mode.

® execute service checksis an integer indicating whether or not service checks were being executed
when NetSaint was running. Values: 0=checks were not being executed, 1=checks were being
executed.

® accept_passive service checksis an integer indicating whether or not passive service checks were
being accepted when NetSaint was running. Values: O=passive checks were not being accepted, 1=passive
checks were being accepted.

® enable event_handlersis an integer indicating whether or not host and service event handlers were
enabled when NetSaint was running. Values: O=event handlers were not enabled, 1=event handlers were
enabled.

® obsess over_servicesis an integer indicating whether or not NetSaint was obsessing over service
checks when it was running. Values: 0O=NetSaint was not obsessing, 1=NetSaint was obsessing.

® enable flap detection is an integer indicating whether or not flap detection was enabled when
NetSaint was running. Values: O=flap detection was not enabled, 1=flap detectienalbe.

Host Information Format:

<host_name>;<state>;<last_check>;<checks_enabled><time_up>;<time.

fication_number>:<current_notification_number>;<notifications_enabled>;<event_handler_¢ < _has_been_: <flap_detection_enabled>:<last_state_change>:<plugin_output>

where...

e host_name s the short name of the host (as defined ifhthg# configuratioriile)) that the state
information corresponds to.

® dtateis an integer corresponding to the state of the host (UP, DOWN, or UNREACHABLE). See the
base/netsaint.file for the integer values of different states.

® |ast_check is a timestamp in time_t format (number of seconds since UNIX epoch) that indicates

when the host status was last checked.

checks_enabled is an integer indicating whether or not checks of this host have been enabled.

Values: O=checks have been disabled, 1=checks are enabled.

time_up is the number of seconds that the host has been in an UP state.

time_down is the number of seconds that the host has been in a DOWN state.

time_unreachable is the number of seconds that the host has been in an UNREACHABLE state.

last_notification is a timestamp in time_t format (humber of seconds since UNIX epoch) that

indicates when the last notification for this host was sent out. If no notifications have been sent out,
this value is set to zero.

® current_natification_number is an integer representing the number of notifications that have been
sent out about this host problem. If no notifications have been sent out since the host last changed
state (of if it is in an UP state), this value is set to zero.

e notifications_enabled is an integer that indicates whether or not notifications for this host have been
enabled. Values: O=notifications have been disabled, 1=notifications are enabled.

e event handler_enabled is an integer indicating whether or not the event handler for this host has
been enabled. Value: O=event handler has been disabled, 1=event handler is enabled.

e problem_has been acknowledged is an integer indicating whether or not this host problem has been
acknowledged. If the host is UP, or it is DOWN or UNREACHABLE and has not been
acknowledged, this is set to 0. If this host is DOWN or UNREACHABLE and the problem has been
acknowledged, this is set to 1.

e flap detection_enabled is an integer indicating whether or not flap detection was enabled for this
host. Values: O=flap detection was not enabled, 1=flap detection was enabled.

® |ast_state changeis a timestamp in time_t format (hnumber of seconds since UNIX epoch) that
indicates when the host last changed state.

plugin_output is the output from the last host chetdxt)

Service Information Format:

<host_name>;<svc_description>(<state>;<last_check>;<lime_ok>;<time,

where...

host_name is the short name of the host that this service is associated with.

svc_description is the description of the service (as defined inhth& configuratioriile) that the

state information corresponds to. Together hth&t namendsvc_descriptiorfields uniquely

identify a service definition.

state is an integer corresponding to the state of the state (OK, WARNING, UNKNOWN, or
CRITICAL). See théase/netsaint.file for the exact values of different states.

last_check is a timestamp in time_t format (number of seconds since UNIX epoch) that indicates
when the service status was last checked.

time_ok is the number of seconds that the service has been in an OK state.

time_warning is the number of seconds that the service has been in a WARNING state.
time_unknown is the number of seconds that the service has been in an UNKNOWN state.
time_critical is the number of seconds that the service has been in a CRITICAL state.
last_natification is a timestamp in time_t format (number of seconds since UNIX epoch) that
indicates when the last notification for this service was sent out. If no notifications have been sent
out, this value is set to zero.

current_notification_number is an integer representing the number of notifications that have been
sent out about this host problem. If no notifications have been sent out since the host last changed
state (of if it is in an UP state), this value is set to zero.

notifications_enabled is an integer that indicates whether or not notifications for this service have
been enabled. Values: O=notifications have been disabled, 1=notifications are enabled.
checks_enabled is an integer that indicates whether or not checks of this service have been enabled.
Values: O=checks have been disabled, 1=checks are enabled.

accept_passive_checksis an integer representing whether or not passive checks are being accepted
for this service. If this value is 1, they are being accepted. If this value is 0, passive checks are not
being accepted.

event_handler_enabled is an integer indicating whether or not the event handler for this service has
been enabled. Value: 0=event handler has been disabled, 1=event handler is enabled.
problem_has been _acknowledged is an integer indicating whether or not this service problem has
been acknowledged. If the service is in an OK state, or it is in a non-OK state and has not been
acknowledged, this is set to 0. If this service is in a non-0K state and the problem has been
acknowledged, this is set to 1.

flap_detection_enabled is an integer indicating whether or not flap detection was enabled for this
service. Values: O=flap detection was not enabled, 1=flap detection was enabled.

last_state changeis a timestamp in time_t format (number of seconds since UNIX epoch) that
indicates when the service last changed state.

plugin_output is the output from the last service chékt)

External Data API Overview

Introduction

Ever since the first release of NetSaint, I've been asked if | had plans to support MySQL, PostgresQL,
Oracle, or a slew of other data sources. In order to support alternate data stores for things like
configuration data, status data, etc. | decided to change a lot of the underlying code in both the core
program and CGls to allow developers to add their own datelithes...

One of the major changes that was made in version 0.0.6 was a complete rewrite of the data I/O routines in
both the core program and the CGls. These revisions resulted in the creation of an abstraction layer that
separated implementation-specific code for accessing data sources from the data processing routines
present in the core and CGls. The end result of this is a set of external data APls that allows developers to
easily write code to support different types of data sources in the core progr&Gksnd

NetSaint 0.0.7 will make use of the new external data APIs to optionally provide native MySQL database
support for status, retention, comment, extended, and object data. Developers should be able to write their
own routines for providing support for other data sources (PostgresQL and Oracle databases, LDAP
servers, etc.) fairlgasily.

The reset of this documentation is provided to give developers an overview of how the APIs work and
how to write their own code to support other data sources than those already natively provided by
NetSaint.

External data types

With the exception of standard logging (to [tbe file| or syslog facility), there are five different types of
external data that the core program and/or the Q&ds

1. Object data - This consists of object definitions (host, services, contact, contact groups, commands,
etc) that are used by both the core program and CGls. Basically everything that can be defined in the
standarghost configfile(s)..

2. Commentdata - This consists of host and service comments which are processed by the core
program and available for display in the CGls. By default, comments are stored in file specified by
thelcomment_filgdirective.

3. Extendeddata - This consists of optional information that is used by the CGls when displaying
information about specific services and host. Currently, only extended data for hosts is supported.
One example of extended data for a host is the graphics associated with it (i.e. icons). By default,
extended information can be specified for particular hosts by [pestextinfhdefinitions in th¢CGI

4. Statusdata - This consists of current program, host, and service status information which is made
available by the core program and used by the CGls. By default, status data is stored in the file
specified by thfstatus_filgdirective.

5. Retentiondata - This consists of saved program, host, and service status information that is used by
the core program and should be retained across program restarts. By default, retention data is stored
in the file specified by thstate retention _fileirective.

Access to externatiata

The following table outlines what type of access the core program and CGls have to each type of external

data:

Core Program | CGls
Object data Read Read
Commentdata | Read/Write Read
Extendeddata | - Read
Statusdata Write Read
Retention data | Read/Write -
API details

For more information on how the various types of external data APIs work, as well as information on
writing your own 1/O routines for external data in the core program and CGls, click on one of the links

below...

|[External object data (XODAPI|

[External comment data (XCIAPI|

|[External extended data (XEBPI|

|[External status data (XSIBPI|

|[External retention data (XRAPI|

External Status Data (XSD)Overview

Nothing here yet... Wait for an alpha versior0d.7

External Status Data (XSD) APl Overview

‘T

Status Data Status Data
Qutput Input

Implementation-Specific Status Data Code
(xdata/xsd*.c)

. / A N 3 "y

T Ty
@

Implementation-
Specific Data
Store

—

http://www.netsaint.org/docs/0_0_7/developer/images/xsdapi.gif

External Retention Data (XRD)Overview

Nothing here yet... Wait for an alpha versior0d.7

External Retention Data (XRD) APl Overview

S —_—

Retention Retention
Data Output Data Input

Implementation-Specific Retention Data
Code
[{xdataxrd*.c)
s > A

T Ty
@

Implementation-
Specific Data
Store

—

http://www.netsaint.org/docs/0_0_7/developer/images/xrdapi.gif

External Comment Data (XCD)Overview

Nothing here yet... Wait for an alpha versior0d.7

External Comment Data (XCD) APl Overview

‘T

Comment Addtion

Deletion, & Comment
Verification Data
Input

Implementation-Specific Comment Data Code
(=xdataixcd®.c)

A _ 7 N 3 S

T Ty
@

Implementation-
Specific Data
Store

—

http://www.netsaint.org/docs/0_0_7/developer/images/xcdapi.gif

External Extended Data (XED)Overview

Nothing here yet... Wait for an alpha versior0d.7

External Extended Info Data (XED) APl Overview

(’ ™

CGls

Extended
Info Data
Input

Implementation-Specific Extended Info
Data Code
k (xdataned®.c)

@

Implementation-
Specific Data
Store(s)

—

http://www.netsaint.org/docs/0_0_7/developer/images/xedapi.gif

External Object Data (XOD) Overview

Nothing here yet... Wait for an alpha versior0d.7

External Object Data (XOD) APl Overview

‘T

Object Data Object Data
Input Input

Implementation-Specific Object Data Code
(=xdataixod*.c)

. w A N 3 "y

T Ty
@

Implementation-
Specific Data
Store(s)

—

http://www.netsaint.org/docs/0_0_7/developer/images/xodapi.gif

Neat Hacks andTricks

Other than the standard monitoring stuff, NetSaint can be used to do some pretty cool things. Instead of
spending your free time playif@uaké why don't you take some time and read about them at
|http://www.netsaint.org/docs/hagks

http://www.idsoftware.com/quake/
http://www.netsaint.org/docs/hacks/

Frequently Asked QuestiondFAQS)

Index

o [Problems compilindNetSainit

® [The statusmap and trends CGls devorkl|

[No hosts are displayed in the image or VRML world generated by the statusmap or s@@igwrl
[The installation didn't createldexec/directory. Where are all th@ugins?
[[NetSaint process may not be running” warnings inaeeg

[Why do | get notifications when hosts &I REACHABLE?

[Hosts are incorrectly listed as being DOWNUNREACHABLHE

[When hosts go down, | get notification about services instead of hosts and the service nofifications
[contain incorrectiata

|Can | monitor a host without defining any servicesitfr

[Can | add host or service definitions without restariegSaintp

[How can | change the timeout values for sereitecks|?

['Return code ok is out of bounds&rrors

[l get error messages when email notifications should gebaént

[Debugging "unknown variable" errors during configuration verificatioruntime
[Running multiple instances of NetSaint on the samaehing

[Missing data in the CGIs or errors about impramghorizatioh

[Where can [find the traceroute and daemor@t#s?

|[Requiring users to authenticate before accessingnetbace

[Displaying pretty hostong

|[Errors commiting commands via the commé&@l

[NetSaint shuts down with warnings about permissions on the confitgnd
[Monitoring remote hoshformation

[Monitoring Windows NTserverk

[Monitoring Novellserverk

[Sending SNMP traps to managemieost$s

[Receiving SNMRraps$

|[Logging events to an exterrddtabade

[Troubleshooting problems witdetSaingt

I’'m having trouble compiling Netsaint - What can 1 do?

Compiling NetSaint on different OSes doesn't really seem to be much of a problem anymore, unless
you're missing some strirfgnctions...

If you're getting errors about thetrncat(), strncpy(), or snprintf() functions, you probably don’t have

the glibc libraries installed on your system. This tends to happen most often on HP-UX and Solaris
boxes. I've tried to prevent potential buffer overflows in NetSaint and the CGls by using these
functions, so they are all over the code. If you don’t want to install the glibc libraries for some reason,
you'll have to find some other way to get everythamgnpiled.

If all you're missing is the snprintf() function, you might want to try grabbing the snprintf.c file from

|http://www.ijs.si/software/snprin{find adding it to the Makefiles so that it gets included during when
you compile things. A few people have mentioned that this version of snprintf does not support the
"%f formatting flag, so you may be out of luc8orry.

The statusmap and trends CGls don’tvork!

If you compile all the CGls, but don't find tfsgatusmajC G| orftrendsCGJ| (or can’t get them to
work), you probably don’t have the following libraries installed correctly on ygstem:

e Thomas Boutell'fgdTibrary (version 1.6.3 or higher is required)
o [Zlib (de)compressiofibrary]
o |PNG developmeriibrar

Thegd library is dependent upon taéb andpng libraries (along with a few others), so you'll have to
have those libraries installed on your system before you can instgH theary. Newer versions of
thegd library also require that thjpeg library also be installed on yoaystem.

If you find that the CGls has not been compiled or do not work properly, make sure you tgdie the
png, zlib, and any other required libraries installed on your system, clean out old configuration
information and rerun the configure scriptfalows:

make devclean
.Jconfigure --with-gd-lib=LIBDIR --with-gd-inc=INCDIR [other options...]

Replace LIBDIR with the directory in which the gd library is installed (usually /ust/lib or /usr/locall/lib)
and replace INCDIR with the directory in which the header files for the gd library are installed (usually
lusr/include ov¥ust/local/include).

After you rerun the configure script, make sure to recompile the CGls and install them in their proper
location.

If you're running RedHat Linux and are having a lot of trouble getting things working, | would
recommend downloading and installing both gaeandgd-develRPMs fronfwww.rpmfind.nejt Note

that other applications that depend on the gd library (PHP, MRTG, etc.) may break when you upgrade,
so they may need to be upgraded or rebuitels

No hosts are displayed in the image or VRML world generated by the statusmap or statuswrl
CGls

http://www.ijs.si/software/snprintf/
http://www.boutell.com/gd
http://www.gzip.org/zlib/
http://www.libpng.org/pub/png/
http://www.rpmfind.net/

The most likely cause of this problem is the fact that you haven't supplied any 2-D or 3-D drawing
coordinates for the hosts. Although the statusmap CGI can generate and auto-layout of your hosts, it
defaults to trying to use user-supplied coordinates. The statuswrl CGI (VRML) will not function if you
do not specify 3-D drawingoordinates.

Where do you specify drawing coordinates for hosts? Ifadseextinfo]]definitions in thgCGJ
Note: If you've compiled the CGlIs with database support for extended data, the
coordinates should be stored in a database table, not the CGI config file. More information on DB

support can be fourfieré

The installation didn’t create alibexec/ directory. Where are all theplugins?

If you didn't read th@nstallationdocumentatidrcarefully and didn’t notice the big note on the
downloads page, you're most likely going to be wondering where gildigingare. Quick and easy
answer - they are distributed separately from NetSaint, so you'll have to grab them
[pagéor directly from thgSourceForge projegagé

"NetSaint process may not be running" warnings in theCGls

http://www.netsaint.org/download/
http://www.netsaint.org/download/
http://sourceforge.net/projects/netsaintplug/

If you are getting erroneous messages about the NetSaint process not running while viewing the CGls,
its probably due to one of the followiltgms:

1. You haven't defined a command to check the status of the NetSaint process. This is done by
supplying a value for tHerocess check commadddective in the CGI configuratiofile.

2. If you have defined a command, perhaps it is not returning the proper exit code. The command
must follow the same rules as other plugins (sefpltigin guidelinekfor more info): a return
code of 0 indicates that NetSaint is running, other values indicate that NetSaint is either not
running or in some degradsthte.

3. If you're using the check_netsaint plugin, check the sanity of the arguments that you're passing it.
The first argument is the full path to the second argument is the number of minutes
that the status file should be "fresher" than, and the third argument is a string that matches the
NetSaint process command line obtained frompg®mmand. Try runnings axuw | grep
netsaintto see what string you should use - a common example of a matching string is
"lusr/local/netsaint/bin/netsaint tisr/local/netsaint/etc/netsaint.cfg”

4. If you have defined a process check command that uses the check_netsaint plugin, make sure that
the plugin is functioning as it should. Execute the check_netsaint plugin from the command line
and check the results. If the plugin is reporting that the NetSaint process cannot be found or if it
returns a "Could not open pipe" message, you may need to edit the PS_RAW_COMMAND
definition in the common/config.h file of the plugin distribution to match the syntax fqsthe
command on your system. For example, under FreeBSD you should us& kitiies -ao 'state
user ppidargs™ or "/bin/ps -axo 'state user ppicommand™(it seems to vary). Once you've
changed the PS_RAW_COMMAND definition, recompile the plugins and test the newly
compiled check_netsaint plugin to see if it works.

The CGls will not allow you to sumbit any commands while they think the NetSaint process is not
running. This is done primarily to prevent people from accidentally submitting multiple
shutdown/restart commands that don’t get processed until NetSaint is started at sontienfiture

Why do | get notifications when hosts ar&JNREACHABLE?

Easy answer. You enabled thetify_unreachableption in thghostdefinition(s) If you don’t want to
get notified when a host becomes unreachable, disable this option in tdefiragon.

I get lots of emails asking why NetSaint isn't smart enough to disable notifications for hosts that
unreachable. The fact of the matter is that NetSasrhart enough to distinguish between DOWN and
UNREACHABLE states - you just have to configure your notification optoyoperly.

Hosts are incorrectly listed as being DOWN otNREACHABLE

This seems to be one of the biggest issues for new users. 99.9% of the time this problem is due to an
incorrect command definition for the host check command you specified/moshdefinitio

A major cause for this problem was due to a syntax change to the command line arguments of the
check_ping plugin. You need to make sure that the host check command is using the proper syntax for
the version of the check_ping plugin that you have. You can check to see if the command works
properly by executing it manually from the command line. Recent versions of the check_ping plugin
require that ap flag be used to specify the number of packets to send. Previous versions of the plugin
did not require this flag - that's where the problem lies. Check your version of the plugin to find out
what syntax you should be using and the check your host check command definition(s) to make sure
they are using the propsyntax.

Important! Just because you have a service that is monitoring ping statistics for a hagitaonean
that the actual host status is being checked. The status of a host is only checked when a service check
results in a non-OK state or if the host was previously down and a service check results istare OK

Some symptoms of incorrect host check commamade:

1. Hosts incorrectly being listed as DOWN
2. Hosts incorrectly being listed as UNREACHABLE
3. Alternating alerts/notifications about host problems @wbveries

When hosts go down, | get notification about services instead of hosts and the service
notifications contain incorrect data

Several people have reported this problem and | spent hours trying to find the problem until | realized
it wasn’t a bug in the code. If you get service notifications when you should be getting host
notifications (and the service notifications you get seem to contain bogus data), chiginyac
[definitiongin the host config file. They are most likéhcorrect.

Make sure that you are not using the same notification command for service and host notification
commands. Service and host notifications are very different and makemaeropwhich are not
transferrable between each type. Look at the sample host config file provided with NetSaint to see
what the contact definitions look like and how the service and host notification commands differ. If
you're wondering what macros can be used in either type of notification, I[tiuk &bl

Can | monitor a host without defining any services foiit?

No, not really. Although yogandefine a host and not assign any services to it, yownuailjet the

results you are expecting. You must define at leaggengcéfor eacthostyou want to monitor.

NetSaint is primarily geared towards monitoring services - hosts are really only checked when there
are problems or recoveries with services (as noted [seifwice checlschedulinfdocumentation).

Can | host or service definitions without restartingNetSaint?

No. You must restart NetSaint every time you add hosts or services (or any other type of object

definition found in thénost configfile).

Important: If you make configuration changes without restarting NetSaint, you may notice
irregularities in the CGls. Some new hosts may appear, some services may disappear, etc. This does
notmean that NetSaint has stopped monitoring the original services and hosts that it started with. This
is simply a side effect of tfguthorizatiodogidin the CGls, which uses a combination of information
stored in th{statudog and thdhost configfile]in deciding what talisplay.

How can | change the timeout values for servicehecks?

First you need to identify where the timeout is occurring. Most plugins time out after 10 seconds of not
being able to contact a service (FTP, HTTP, etc). If the plugins are timing out after a short period of
time, increase the timeout value for the plugin (use an appropriate commaadylineent).

In addition to plugins having timeouts, NetSaint enforces its own timeout value on all service checks
that run. By default, this is set to 30 seconds. If the plugin executes for more than 30 seconds, NetSaint
will automatically kill it off and return a critical error for that service. If you see entries in the log file

that say a service check timed out, this may be your problem. You can adjust the maximum timeout

value for service checks by using gevice_check_timeduiirective.

As a side note, there are also directives for setting the maximum timefposfoheckg|notificationg
leventhandlerk and thgopcspcommanti

"Return code of x is out of bounds"errors

If the plugin output for a host or service check give a "(Return codésajut of bounds)" error it
usually means one of tvthings:

1. The plugin you're using to perform the host or service check is not returning the proper return
code when it exits (as described in[ghegin developeguidelined

2. The path to the plugin is invalid (i.e. the binary or script does not exist). This is most likely the
case if you get errors about a return cod&2¥fbeing out of bounds. If this is the error you're

getting, check yo and make sure the path to all executables is correct (and
that they’re actually installed on yosystem).

| get error messages when email notifications should get semit

If you're seeing message likenail: Null names are natllowed', "You must specify direct recipients
with -s, -c, or-b.", or something similiar, you've probably got an error in your notificgéiemmand

Make sure that the syntax used to #aith/mail (or whatever/wherever your mail program happens to
be) in your notification command definitions is correct for ysystem.

Debugging "unknown variable" errors during configuration file verification or runtime

When trying to run NetSaint or verify your configuration file data usinguteggument, NetSaint may
print out a message like "Error in configuration file "xxxxxxx.cfg’ - Line 34 (Unknown variable)". A
few simple checks will usually resolve tigigoblem...

1. Make sure you are passing the path tdntlaén_configuratioriile] andnot thehost configuratioh
[file] on the command line. Many people have made this mistake. The correct syntax would be as
follows (modified for your system, @urse):
netsaint -v/usr/local/netsaint/etc/netsaint.cfg

2. Make sure that you don’t have any invalid variables defined in your configuration file. Notice that
the error message will contain a reference to the name of the configuration file and the line
number on which the error was encountered. Make sure that all comment lines contain a pound
sign (#) in the first character of the line. If you're not sure about what variables are valid, check
the documentation for tfr@air andhos}configuration files.

3. Make sure all variable identifiers are in lower cd&eample:
"admin_email=someaddress@somedomain.conihstead of
"ADMIN_EMAIL=somedomain@nowhere.com"

How do I run multiple instances on NetSaint on the sammachine?

You can run multiple instances of NetSaint on the same machine, if you ensure that the following
variables are unique for each instanc&lefSaint...

[Statusfile]
Lock file|

ii

i

® 06 06 06 0 0 O
EE

If you are using the web interface, you will have to setup separate directories to hold the CGls for each
instance of NetSaint and create appropriate script aliases in your web server configuration file. This is

necessary becaugis| configuratiorfilel must be unique for each setup of CGls, as it contains a

reference to which main configuration file the CGls shoekt.

One last thing you should check is your init script (if you're using one). The init script should start,
stop, restart, and reload all copies of NetSaint (if that's what you warda) to

When | access the CGls | don’t see everything | should or | get authorzaticerrors...
If you believe you are unable to see all the information in the CGls or if you are getting authorization

errors, you probably haven't configured the web server to require authentication or haven’t setup
authorzation correctly. See the documentation on authentication and authorization in fher¢Gls

Where can | find the traceroute and daemonchiCGls?

ThetracerouteanddaemonchiCGls are now included in the contrib/ subdirectory of the main
NetSaintdistribution.

How do | requre users to authenticate before accessing the wigtherface?

See the documentation on authentication and authorization in th§h&@Is
How do | get those pretty pretty host icons to display in mgZGls?
If you want to associate images with particular hosts for use in the status, status map, status world, and

extended information CGls, you must defiyéended hoshformatiofentries in youlcGl

I’'m getting errors when attempting to commit commands to NetSaint via the comman@GlI

If you are gettindCould not open command filesomefile for update’ errors when attempting to
commit commands to NetSaint via the most likely problem is with directory and/or
file permissions. Here is what you can do toitfix

1. Make sure you've created the directory to hold the command file as olfiingd
2. Make sure you restart your web server so that it inherits the new group permissions you just
assigned

NetSaint shuts down with warnings about permissions on the commariite
If NetSaint is shutting itself down after it processes external commands and you get warnings in the
log file about incorrect permissions on the command file, make sure to read the directiofrefgund

How do | monitor remote hostinformation?

Several people have asked how to use vaplugingthat check information on the local host to report
information from remote hosts. Various methods for doing this are desbetma..

If you need to actually execute a plugin on a remote host and get the results back, you can use one of
the followingmethods...

e Use thdcheck by _sghplugin” to execute a plugin on a remote host. @heck_by_sstplugin is
basically a wrapper for executing a plugin on a remote host using SSH. You must have SSH
installed and configured properly in order to use this.

e Use thdnrpdaddon to accomplish this. The plugins and the nrpe daemon reside on the remote
host. The check_nrpe plugin (included with the nrpe package) sends a request to the nrpe daemon
to execute the plugin on the remote host and then grabs the results for NetSaint.

e Use thdnrpepaddon. This addon works in a similiar manner to the nrpe package, but it encrypts
the transmitted data, runs as a service from inetd, and makes use of the TCP Wrappers package
for access control.

® Usersh to execute the plugin remotely, although | guess | wouldn’t recomthénd

If all you need is to check disk space, etc. on a remote host, you can use one of thebekihods

® Use one of the plugins included with fhetsaint_staj@éddon for NetSaint. The addon, written by
Charlie Cook, includes a Perl daemon which runs on the remote host and four plugins which are
used to gather the remote host information from the daemon. The daemon is designed to run on
Linux, IRIX, HP-UX, SunOS, and OSF/1 systems. Modifying the code for other systems should
be fairly easy. More on theetsaint_statdplugin can be fourfderg

e Use thqcheck overgplugin to query information from a remote host. The remote host must be
running Eric Molitor'§Over-CRcollector in order for this to work.

e Use thgcheck_snmiwlugin to check the value of various OIDs on the remote host. You must
have SNMP services installed and running on the remote host in ordethis.do

How can | monitor Windows NT servers?

http://www.molitor.org/overcr/

Yes, you can monitor NT servers with NetSaint. There are basically two ways it can currently be
done...

® By using SNMP
® By using the NSSERVICER addon (service phdjins)

SNMP

The good news is that NT has a lot of performance data that you can monitor. The bad news is that its
difficult to do. Your best bet is probably going to be to install SNMP services on all yoboX€E.

In order to expose NT performance counters for monitoring, you'll have to run the SNMP service on
all servers you want to monitor. You'll also have to install any necessary performance MIBs for the
services you want to monitor. | believe these can be found in the NT Resource Kit or in various server
admin packages. If you've feeling extra lucky you can try to search the Microsoft site for the terms
SNMP andMIB and maybe you'll findomething...

You can search tfdRTG mailing listarchivelfor more information on configuring NT servers to

expose various performance counters via SNMP. | know this has been discussed in the past, as many
people are graphing various NT performance statistics using MRTG. In fact, somebody from Microsoft
is actually doing it - you can find their web pagfht@ép://snmpboy.rte.microsoft.com/

Once you've actually got the SNMP stuff working, you can usfghiek _snmjplugin to query your
NT servers and generattarms.

NSSERVICER Addon

Jan Christian Kaldestad and Hallstein Lohne have written the nsservicer addon for monitoring NT
servers. The addon includes a service that runs on your NT servers and several plugins that run from
the NetSaint host. The nsservicer addon is capable of monitoring the event log, disk usage, process
usage, and other info.

You can find the addon int the contrib section ofdbenloadgpagé

How can | monitor Novell Netwareservers?

You can monitor basic stats on your Novell server like disk usage, user connections, LRU sitting time,
cache buffers, long term cache hits, and processor load by usicttettie nwstaplugin (which is

included in the main plugin distribution). In order for the plugin to work, you have to install and run
James Drew’s MRTGEXT NLM on your Novell server. The NLM can be obtéieed

Can NetSaint send SNMP traps to managemetiosts?

http://www.ee.ethz.ch/~slist/mrtg
http://snmpboy.rte.microsoft.com/
http://www.netsaint.org/download
http://www.cae.wisc.edu/~drews/mrtg/

Yes, but not directly. NetSaint relies on plugins to handle the gathering of service and host information
and event handler scripts to handle events that occur with services and hosts. If you want to have
NetSaint send an SNMP trap to a management host in the event that a particular service has a problem,
you will have to write a servigeventhandlefscript and add it to thevent_handleroption of the

If you have thfgCD-SNMR package installed on your host, you could have the

script call thesnmptrap command to actually send a trap message, depending on what type of service
event occurred. Look at tlexample event handlscrip}to get a better idea of how to writseript.

Can NetSaint receive SNMRraps?

Yes, but not directly. NetSaint is not designed to be a replacement for a full-blown SNMP

management system, but you can configure it to generate alerts based on SNMP traps that are received
by some host on your network. If you have[ti@D-SNMR (now called NET-SNMP) package

installed on a host on your network, you can havetineptrapddaemon route SNMP traps to

NetSaint using passive checks. More information on doing this can befffetsd

Can NetSaint log host and service events to an exterrddtabase?
Not directly, but this can be done fairly easily. You'll probably want to define global host and service
leventhandlerito do this. The global event handlers could call a script which inserts the appropriate

event information into a database of your choosing. This would allow you to run queries and generate
more detailed reports than what are available irOBés.

Something isn’'t working properly - How can | track down theproblem?

http://net-snmp.sourceforge.net/
http://net-snmp.sourceforge.net/

theDEBkéd lIrofein slpp oedicecifeovgaus taral flaso shahy oy caraxéeoi timerion ia dtedfatesk. Most
people are vague when they report a problem and have no desire whatsoever to try and track down the
Hroeiehavendsiinededhey SiRERBHGS0r DHoBE GdLrationst tHatNpisanpassafoneersuiid kresessely

Aed stad K pRIDADY YadERENMeENaFIeo things will not always work properly. If you suspect that
either the service check or notification routines are not working, here are a few things you can do to try

%/M%miwpﬂgﬂp@ﬁﬁjmsrllocallnetsaintletc/netsaint.cfg
il NG RInh gt WBARTalERIR ot eBRT G aRe RAasK falRied deakiiranahile gisaut. It

ehayichielp you track down where The problem is occurring.” You may want to redirect the output to a
file to make it easier to review it. Some code tweaking may be necessary on your part in order to fix

IhingschrhasHnowiringddIavate/ Idekmanasrsieiemaianscsy | can include the fix indldases.

If vioLeisr siapd R imA iR bbéR a6 fiNdhreRr el G Re poall SomEherfeloytngataan doive e
E6ATRWALIIAGIESyou're planning on sending a laagachment):

THe bRt Weepi QUi IPANStTRIA MeeatRITWINIG-e you more information on what is going on inside of
NetShideswipionfatintaddtopein iNerdamanaddubdty i stisieeciggithpqudblennelp me track down
prablEmesOIFtiktrieutiat/veds onfent hisetturevy dedte res oingdd&tSaim doidsemniResifH htdrimis oy far use
the dekrlygingode...
R4. Yc;_ur co?}fgiguqra_tion filegnetsaint.cfgandhosts.cfg) ol lacing th

scsfighles (ST 2nablg QREidBa Y tRm%ons as follows, replacing the
"--enable-DEBUGX" v%mne or more of the %I%%Z Eom he thblew:
.Iconfigure --prefix=/your/netsaint/directorsenable-DEBUGXx

DebuggingOptions

DebugOption Description

--enable-DEBUGO| Used to trace function calls. lat of messages will be printed out if you

uncomment this option, but it very useful to trace what functions are being
called. Note that not all functions will print an exit message if code within the
function causes an early exit (before reaching the end dditic&on).

--enable-DEBUG1| Used to print out informational messages about variable settings. Most ugeful
when trying to debug the configuration data as it is being reaelrified.

--enable-DEBUG2| Used to print out warning messages, usually when configuration data is bping
read owerified.

--enable-DEBUG3| Used to print out informational messages during host and service checks] Good
to use if you suspect problems are occuring during sechieeks.

--enable-DEBUG4| Used to print out informational messages during host and service notificafions.
Good to use if you suspect problems are occurring during the notification
events.

RecompileNetSaint.

[Verify your configuratiordatdagain - you'll see a lot more information this time if you have enabled

SecuringNetSaint

Introduction

This is intended to be a brief overview of some things you should keep in mind when installing NetSaint,
SO as to not set it up in an insecure manner. This document is new, so if anyone has additional notes or
comments on securing NetSaint, please drop me a nogtsaint@netsaint.org

Do Not Run NetSaint asRoot!

NetSaint doesn’t need to run as root, so don't do it. Even if you start NetSaint at boot time with an init
script, you can force it to drop privileges after startup and run as another user/group by using the
[netsaint_usg¢andnetsaint _grodypulirectives in the main confije.

Enable External Commands Only IfNecessary

By defaultjexternalcommandsre disabled. This is done to prevent an admin from setting up NetSaint
and unknowingly leaving its command interface open for use by "others".. If you are planning on using
[eventhandlerfor issuing commands from the web interface, you will have to enable external commands.
If you aren’t planning on using event handlers or the web interface to issue commands, | would
recommend leaving external commaxdsabled.

Set Proper Permissions On The External Commanéile

If you enablgexternalcommandsmake sure you set proper permissions oriuselocal/netsaint/var/rw
directory. You only want a few users (probably only NetSaint and the web server) to have permissions to
write to the command file. Instructions on setting up permissions for the external command file can be

foundheré

Require Authentication In The CGls

| would strongly suggest requiring authentication for accessing the CGls. Once you do that, read the
documentation on the default rights that authenticated contacts have, and only authorize specific contacts
for additional rights as necessary. Instructions on setting up authentication and configuring authorization
rights can be fourflerg If you disable the CGI authentication features usinfufiee authenticatipn

directive in the CGlI config file, t will refuse to write any commands to feeternd|
After all, you don’t want the world to be able to control NetSaintaie?

Use Full Paths In CommandDefinitions

When you define service checks, event handlers, notification commandgc@tcmandlefinitiong
make sure you specify tliell pathto any scripts or binaries you'executing.

Hide Sensitive Information With $USERn$Macros

The CGils read thmain configfile|andhost configfile(s), so you don’t want to keep any sensitive

information (usernames, passwords, etc) in there. If you need to specify a username and/or password in a
[commandiefinitior} use a $USERr§acrdto hide it. SUSERN$ macros are defined in one or more
[resourcdileg The CGls will not attempt to read the contents of resource files, so you can set more
restrictive permissions (600 or 660) on them. See the sasguarce.cfdile in the base of the NetSaint
distribution for an example of how to define $USERm&cros.

Tuning NetSaint For Maximum Performance

Introduction

So you've finally got NetSaint up and running and you want to know how you can tweak it a bit... Here
are a few things to look at for optimizing NetSaint. Let me know if you think obtrers...

Optimization Tips:

1.

4.

Use aggregated statugpdates Enabling aggregated status updates (with the

[aggregate status updatestion) will greatly reduce the load on your monitoring host because it
won't be constantly trying to update This is especially recommended if you are
monitoring a large number of services. The main trade-off with using aggregated status updates is
that changes in the states of hosts and services will not be reflected immediately in the status file.
This may or may not be a big concernyou.

. Use a ramdisk for holding statusdata. If you're using the standajsdatudog and you'renot using

aggregated status updates, consider puttingatialirectory (where the status log is stored) on a
ramdisk. This will speed things up quite a bit (in both the core program and the CGls) because it
saves a lot of interrupts and digikashing.

. Check service latencies to determine best value for maximum concurreclhecks NetSaint can

restrict the number of maximum concurrently executing service checks to the value you specify with
thejlmax_concurrent _chedksption. This is good because it gives you some control over how much
load NetSaint will impose on your monitoring host, but it can also slow things down. If you are
seeing high latency values (> 10 or 15 seconds) for the majority of your service checks (via the
[extinfo CGI), you are probably starving NetSaint of the checks it needs. That’s not NetSaint’s fault -
its yours. Under ideal conditions, all service checks would have a latency of 0, meaning they were
executed at the exact time that they were scheduled to be executed. However, it is normal for some
checks to have small latency values. | would recommend taking the minimum number of maximum
concurrent checks reported when running NetSaint withstbemmand line argument and doubling

it. Keep increasing it until the average check latency for your services is fairly low. More information
on service check scheduling can be fobad

Use passive checks whepossible The overhead needed to process the resiffassive service
[checklis much lower than that of "normal” active checks, so make use of that piece of info if you're
monitoring a slew of services. It should be noted that passive service checks are only really useful if
you have some external application doing some type of monitoring or reporting, so if you're having
NetSaint do all the work, this won’t hetipings.

. Avoid using interpreted plugins. One thing that will significantly reduce the load on your

monitoring host is the use of compiled (C/C++, etc.) plugins rather than interpreted script (Perl, etc)
plugins. While Perl scripts and such are easy to write and work well, the fact that they are
compiled/interpreted at every execution instance can significantly increase the load on your
monitoring host if you have a lot of service checks. If you want to use Perl plugins, consider
compiling them into true executables using perlcc(1) (a utility which is part of the standard Perl
distribution) or compiling NetSaint with an embedded Perl interpretebidew).

. Use the embedded Peihterpreter. If you're using a lot of Perl scripts for service checks, etc., you

will probably find that compiling an embedded Perl interpreter into the NetSaint binary will speed

things up. In order to compile in the embedded Perl interpreter, you'll need to supply the
--enable-embedded-peasption to the configure script before you compile NetSaint. Also, if you use
the--with-perlcacheoption, the compiled version of all Perl scripts processed by the embedded
interpreter will be cached for later reuse.

. Optimize host checkcommands If you're checking host states using the check_ping plugin you'll

find that host checks will be performed much faster if you break up the checks. Instead of specifying a
max_attemptsalue of 1 in thfhostdefinition and having the check_ping plugin send 10 ICMP

packets to the host, it would be much faster to settine attemptsalue to 10 and only send out 1

ICMP packet each time. This is due to the fact that NetSaint can often determine the status of a host after
executing the plugin once, so you want to make the first check as fast as possible. This method does have
its pitfalls in some situations (i.e. hosts that are slow to respond may be assumed to be down), but | you'll
see faster host checks if you use it. Another option would be to use a faster plugin (i.e. check_fping) as the
host_check _commaniistead otheck ping.

. Don’t use agressive hosthecking Unless you're having problems with NetSaint recognizing host
recoveries, | would recommemat enabling th@ise _aggressive _host _checkomion. With this

option turned off host checks will execute much faster, resulting in speedier processing of service check
results. However, host recoveries can be missed under certain circumstances when this it turned off. For
example, if a host recovers and all of the services associated with that host stay in non-OK states (and
don't "wobble" between different non-OK states), NetSaint may miss the fact that the host has recovered.
A few people may need to enable this option, but the majority don’t and | would recomatend

using it unless you find it necessatry...

. Optimize hardware for maximum performance. Your system configuration and your hardware

setup are going to directly affect how your operating system performs, so they’ll affect how NetSaint
performs. The most common hardware optimization you can make is with your hard drives. CPU and
memory speed are obviously factors that affect performance, but disk access is going to be your biggest
bottlenck. Don't store plugins, the status log, etc on slow drives (i.e. old IDE drives or NFS mounts). If
you've got them, use UltraSCSI drives or fast IDE drives. An important note for IDE/Linux users is that
many Linux installations do not attempt to optimize disk access. If you don't change the disk access
parameters (by using a utility likelparam), you'll loose out on ot of the speedy features of the

new IDE drives. Sdfhis articld for more information on tuning hard drive performance under Linux.

http://linux.about.com/compute/linux/library/weekly/aa110600q-a.htm

Using Macros In Commands

Macros

One of the features available in NetSaint is the ability to use madcosimantdefintions. Immediately
prior to the execution of a command, NetSaint will replace all macros in the command with their
corresponding values. This allows you to define a few generic commands to handle all your needs.

Macro Validity

Although macros can be used in all commands you define, not all macros may be "valid" in a particular
type of command. For example, some macros may only be valid during service notification commands,
whereas other may only be valid during host check commands. There are nine types of commands that
NetSaint recognizes and treats differently. They afelksvs:

Service checks

Service notifications

Host checks

Host notifications

Servicgeventhandlergand/or a global service event handler
Hostleventhandlergand/or a global host event handler
[OCSPcommand

Servicgdperformancelatjgcommands
Hostlperformancelatacommands

© NN E

The table below lists all macros currently available in NetSaint, along with a brief description of each and
the types of commands in which they are valid. If a macro is used in a command in which it is invalid, it is
replaced with an empty string. It should be noted that macros consist of all uppercase characters and are
enclosed ir$ characters.

Macro Availability Chart

Service
Event
Handlers

Host
Event

& Global Handlers | Service Host
Macro Name Macro Descrintion Service | Service Host Host Service & Performance | Performance
P Checks | Notifications | Checks | Notifications Global Data Data
Event
Host Commands | Commands
Handler Event
& [OCSH
Handler
Command
Short name for the contact
$CONTACTNAMES (ie. idoe thatis being | | yeg No | Yes No No No No

notified of a host or service
problem

Long name/description for
$CONTACTALIASS the contact (i.e. "John Doe")| No Yes No Yes No No No No
beingnotified

Email address of the contac

$CONTACTEMAILS beingnotified

No Yes No Yes No No No No

$CONTACTPAGER$

Pager number/address of the

contact beingotified

No

Yes

No

Yes

No

No

No

No

$HOSTNAMES

Short name for the host (i.e.
"biglinuxbox"). During a
service notification, this
refers to the host associated
with theservice.

No

Yes

No

Yes

Yes

Yes

Yes

Yes

$HOSTALIASS

Long name/description for
the host (i.e. "Big Linux
Server")

No

Yes

No

Yes

Yes

Yes

Yes

Yes

$HOSTADDRESS$

The IP address of tHeost

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

$HOSTSTATES

The current state of the host
("UP", "DOWN", or
"UNREACHABLE")

No

Yes

No

Yes

Yes

Yes

Yes

Yes

$ARGN$

The nth argument passed to|
the service check command
Read the documentation on
[servicedefnitiongfor more
info. NetSaint supports up tq
sixteen argument macros
($ARG1$ through
$ARG16$).

Yes

No

No

No

No

No

No

No

$SERVICEDESCS$

The long name/description g
the service being monitored
(i.e. "Main Website")

f

No

Yes

No

No

Yes

No

Yes

No

$SERVICESTATES

The[statubof the service
being monitored
("WARNING",
"UNKNOWN?",
"CRITICAL", or "OK")

No

Yes

No

No

Yes

No

Yes

No

$OUTPUTS

The text output from the
service or host check (i.e.
"FTP ok - 1 second respons
time"). For service
notifications and event
handlers, this will contain the
text output from the service
check. For host notifications
and event handlers, this will
contain the text output from
the hostheck.

No

Yes

No

Yes

Yes

Yes

Yes

Yes

$PERFDATA$

This macro contains any
[performancefatthat may
have been returned by the
service or hostheck.

No

Yes

No

Yes

Yes

Yes

Yes

Yes

$EXECUTIONTIMES$

This is the number of seconds

that the host or service check
took to execute (i.e. the

amount of time the check was

executing).

Yes

No

Yes

Yes

Yes

Yes

Yes

SLATENCY$

This is the number of seconds

that a service check lagged
behind its scheduled check
time. For instance, if a check
was scheduled for 03:04:15
and it didn't get executed
until 03:14:17, there would
be a check latency of 2
seconds.

No

Yes

No

No

Yes

No

Yes

No

$NOTIFICATIONTYPES$

Identifies the type of
notification that is being sen
("PROBLEM",
"RECOVERY", or
"ACKNOWLEDGEMENT").

No

Yes

No

Yes

No

No

No

No

$NOTIFICATIONNUMBER$

The current notification
number for the service or
host. The notification number
increases by one (1) each
time a new notification is
sent out for a host or service
(except for
acknowledgements). The
notification number is reset to
0 when the host or service
recoverdafter the recovery
notification has gone out).
Acknowledgements do not
cause the notification number
toincrease.

No

Yes

No

Yes

No

No

No

No

$DATETIMES$

Date/time stamp (i.é=ri Oct
13 00:30:28 CD12000

No

Yes

No

Yes

Yes

Yes

Yes

Yes

$SHORTDATETIMES$

Date/time stamp (i.e.
10-13-200000:30:28

No

Yes

No

Yes

Yes

Yes

Yes

Yes

$DATES$

Date stamp (i.€10-13-2000

No

Yes

No

Yes

Yes

Yes

Yes

Yes

$TIME$

Time stamp (i.e00:30:28

No

Yes

No

Yes

Yes

Yes

Yes

Yes

$TIMETS$

Time stamp in time_t format
(seconds since the UNIX
epoch)

No

Yes

No

Yes

Yes

Yes

Yes

Yes

$LASTCHECKS$

This is a timestamp in time_
format (seconds since the
UNIX epoch) indicating the
time at which a service or
host check was last
performed.

No

Yes

No

Yes

Yes

Yes

Yes

Yes

$LASTSTATECHANGES$

This is a timestamp in time_|
format (seconds since the
UNIX epoch) indicating the
time at which a service or
host last changestate.

No

Yes

No

Yes

Yes

Yes

Yes

Yes

$ADMINEMAILS

Email address for the local
administrator (of the host
doing themonitoring)

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

$ADMINPAGERS$

Pager number/address for t
local administrator

eYes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

$STATETYPES$

Thelstatetypd for the current
service or host check
("HARD" or "SOFT"). Soft
states occur when service o
host checks return a non-OK
state and are in the process
being retried. Hard states
result when service or host
checks have been checked
specified maximum number
of times. Notifications are
sent out only when hard stat
changesccur.

of
No

A

e

No

No

No

Yes

Yes

Yes

Yes

$SERVICEATTEMPTS$

This refers to the number of
the current service check
retry. For instance, if this is
the second time that the
service is being rechecked,
this will be the number two.
Current attempt number is
only useful when writing
servicdeventhandlerkfor
"soft" states that take a
specific action based on the
service retrynumber.

No

No

No

Yes

No

Yes

No

$HOSTATTEMPTS

This refers to the number of
the current host check retry.
For instance, if this is the
second time that the host is
being rechecked, this will be
the number two. Current

attempt number is only useful

when writing hogevent
[handlerlor "soft" states that
take a specific action based
on the host retrmumber.

No

No

No

No

No

Yes

No

Yes

$USERNS$

The nth user-definable
macro. User macros can be
defined in one or more
[resourcdiled . NetSaint
supports up to thrity-two use|
macros (SUSER1$ through
$USER32%).

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

NetSaint StatusLevels

Different status levels (also referred to as "states") for hosts and services are listed below. Some states are
internal to NetSaint and cannot be generated by external plugins. Plugins are only capable of returning

OK, UNKNOWN, WARNING, and CRITICAL states. See the documentatidwigimg plugingfor more
information

Service Statud_evels

Status Description

This status level indicates that the service has not been checked yet. Pending status

PENDING levels occur only after NetSaint is started and will disappear as servicdseaked

This status indicates that the service being monitored appears to be both running and

OK o
functioningproperly.

This status indicates that the service is functioning properly at the moment, byt that
RECOVERED at the last check it was at either a warning, an unknown, or a critical status. In|other
words, it just came baakp.

This status indicates that the service being monitored appears to have some

WARNING problems, but is still in a semi-functiorsthte.

This status indicates that there was some sort of internal error with the plugin fthat
UNKNOWN prevented it from checking the status of a service. For the purposes of notificgtion,
unknown status levels are considered to be the same as warningeselsis

This status indicates that either there is a big problem with the service being

CRITICAL checked or that the service is completghavailable.

UNREACHABLE This s_tatus |n'd|c'ates that the service cannot be checked because the host that it is
associated with isnreachable.

HOSTDOWN In the status CGl this indicates that the host associated with the service was down

the last time the service wakecked.

Host StatusLevels

Status Description
This status level indicates that the status of the host is unknown, because no gervices
associated with it have been checked yet. Pending status levels occur only when

PENDING o - :) .
NetSaint is started, and will disappear as soon as at least one service associgted with
the host ishecked.

upP This status level indicates that the host appears g be

DOWN This status level indicates that the hostasvn.

UNREACHABLE Thls status level indicates that the host is unreachable because a host that it felied on
(i.e. a parent or grandparent host) was/n.

Information On The CGls

Introduction

This is a brief description of each CGI distributed with NetSaint, along with the various options that can
be specified in the URL to control outpdiuthorizationrequirements for each CGI are athscussed.

Important: By default, the CGls require that you have authenticated to the web server and are authorized
to view any information you are requesting. For more information on configuring your web server and
CGil configuration file to allow for this, read the sectionfsetting up the welnterfacéandCGI]

Index

[StatusCGI

[Status ma£Gl

CommandCGl

Extended information'.:GI|
[Log file CGl|

History CGl

[History CGI

NotificationsCGl
TrendsCGl

[Availability reportingCGI|

StatusCGl

i

H

IERE -ul-l-II HEEEE
1
1

File Name: status.cgi

Description:
This is the most important CGI included

CGI Arguments:

with NetSaint. It allows you to view the

Argument

Description

current status of all hosts and services tha
are being monitored. The status CGI can

host=all

This will produce a detailed view of the sta
of all services being monitored wiltetSaint

produce two main types of output - a status
overview of all host groups (or a particular
host group) and a detailed view of all
services (or those associated with a
particular host). Pretty icons can be

host=xxxx

This will produce a detailed view of the sta
of all services associated with hasix
wherexxxxis the short name of the host as
defined in thdhos}configuratiorfile.

associated with hosts by definjegtendep

[hostinformationentries in th{€GI
[configurationfile]

hostgroup=all

This will produce an overview of all servicep
(and their associated hosts) being monitorgd
with NetSaint, grouped into various host
groups.

Authorization Requirements:

® |f you ardauthorized for alhost$you can
view all hostsand all services.

If you ardauthorized for alkervicepyou can

hostgroup=xxxx

This will produce an overview of all service
(and their associated hosts) belonging to h
groupxxxx wherexxxxis the short name of
the host group as defined in fhes}
configurationfile.

2

DSt

view all services.

If you are arauthenticatedcontactyou can
view all hosts and services for which you are
acontact.

columns=x

This option may only be used in conjunctio
with thehostgroup=all argument. It allows
you to control how many columns of
hostgroups are displayed on the generated
page. For instance, supplying
hostgroup=all&columns=4as arguments to
the CGI will produce an overview page tha
contains four columns of hogtoups.

style=detail

-

This option may only be used in conjunctio|
with thehostgroup argument. Supplying this
option will produce a detailed view of all
services for hosts that are members of the
hostgroup you specified. If you do not supp
this option, the default action is to produce
status overvievpage.

y

nopopup

This option will suppress the host alert
console window that gets displayed when ¢ne
or more monitored hosts is either down or
unreachable.

Status Map CGl

File Name: statusmap.cgi

Description:
This CGI creates a map of all hosts that you have defined

CGI Arguments:

on your network. The CGI uses Thomas Boutfgtls

Argument

Description

library (version 1.6.3 or higher) to create a PNG image of
your network layout. The coordinates used when drawing
each host (along with the optional pretty icons) are taked
from[extended hoshformatiofentries in th{€GI]

host=all

This will produce a
network map of all hosts
being monitored with
NetSaint

[configurationfile] If you can’t seem to find this CGlI, or if
you have get errors when trying to compile or run it, read

this FAQ

Authorization Requirements:

® If you arqauthorized for alhost$you can view all hosts.

host=xxxx

This will produce a
network map of hostxxx
and all of its child hosts,
wherexxxxis the short
name of the host as
defined in thhos}
configurationfile.

® If you are arauthenticatedontactyou can view hosts for which

you are acontact.

Note: Users who are not authorized to view specific hosts will see
unknownnodes in those positions. | realize that they really shouldn’t

maxwidth=xxxx

This will limit the
maximum width of the
produced image txxx
pixels.

seeanythingthere, but it doesn’t make sense to even generate the mg
if you can't see all the hodiependencies...

o

maxheight=xxxx

This will limit the
maximum height of the
produced image toxxx
pixels.

hspacing=xx

This sets the horizontal
spacing between host
nodes tox pixels.

vspacing=xx

This sets the vertical
spacing between host
nodes tox pixels.

createimage

This instructs the CGl to
create the PNG image
instead of the HTML codg
with imagemap
coordinates

http://www.boutell.com/gd

WAP Interface CGI

r
Met5aint
WHP Interface

Luick Staks)

Status Summary
Status Dverwview

All Problems
Unhandled Problems
Process Info

HetSaint WAP Interface

Options

File Name: statuswml.cgi

Description:

This CGI serves as a WAP interface to network status information. If you have a WAP-enable device
(i.e. an Internet-ready cellphone), you can view status information while you're on the go. Different
status views include hostgroup summary, hostgroup overview, host detail, service detail, all problems,
and unhandled problems. In addition to viewing status information, you can also disable notifications
and checks and acknowledge problems from your cellphone. Prettyhab@l,

Authorization Requirements:

If you ardauthorized for systemformatiorjyou can view NetSaint process information.

If you ardauthorized for alhostgyou can view status data for all hoatsl services.

If you ardauthorized for alkservicepyou can view status data for all services.

If you are arauthenticatedcontactyou can view status data for all hosts and services for which yolcargaet.

Status World CGI (VRML)

File Name: statuswrl.cgi

Description:
This CGI creates a 3-D VRML model of all hosts that you

CGI Arguments:

12

have defined on your network. Coordinates used when Argument | Description
drr?lwmg the hosts (as well as pret'Fy te_xture maps) are defined This will produce a network
usindextended hoshformationjentries in th{€GI host=all | model of all hosts being
configurationfile} You'll need a VRML browser (like monitored withNetSaint
Cortond[CosmoPlayefor[WorldView) installed on your —
tem before you can actually view the generatedel. This will produce a network
Sys model of hoskxxxand all of
L . _ its child hosts, wherexxxis
Authorization Requirements: host=xxxx | " hort name of the host a
defined in thdhos}
® |f you ardauthorized for alhost$you can view all hosts. configurationfile.
® |f you are arauthenticatedontactyou can view hosts for which
you are aontact. This will prevent images
notextures| from being texture mapped

Note: Users who are not authorized to view specific hosts will see

unknownnodes in those positions. | realize that they really shouldn’t seg¢

anythingthere, but it doesn’t make sense to even generate the map if y
can't see all the hoslependencies...

Tactical Overview CGI

T .
———

T T . L

T

T
i fl
; ml -
o o

T =_'E

—u

-u---

= = a
TR

File Name: tac.cqi

onto hosbbjects.

DU
notext

This will suppress the
billboard text (host name an
status) that is displayed ove

o

the hosbbjects.

http://www.parallelgraphics.com/cortona/
http://www.cosmosoftware.com/
http://www.intervista.com/

Description:

This CGl is designed to server as a "birds-eye view" of all network monitoring activity. It allows you

to quickly see network outages, host status, and service status. It distinguishes between problems that
have been "handled" in some way (i.e. been acknowledged, had natifications disabled, etc.) and those
which have not been handled, and thus need attention. Very useful if you've got a lot of hosts/services
you're monitoring and you need to keep a single screen up to alert you of problems.

Authorization Requirements:

® |f you ardauthorized for alhost$you can view all hostand all services.
® |f you ardauthorized for alkervicepyou can view all services.
® |f you are arauthenticatedontactyou can view all hosts and services for which you arentgact.

Network OutagesCGl

,
i
m |

File Name: outages.cgi

Description:
This CGI will produce a listing of "problem" hosts on your network that are causing network

outages. This can be particularly useful if you have a large network and want to quickly identify
the source of the problem. Hosts are sorted based on the severity of the outage they are causing.
More information on how the network outage CGI works can be

Authorization Requirements:

® |f you ardauthorized for alhost$you can view all hosts.
® |f you are arauthenticatedcontactyou can view hosts for which you are@ntact.

Configuration CGI

e ey e i i L

PEPEEEERTROOEET

P WL |

File Name: config.cgi

Description:

This CGI allows you to view host, host
group, contact, contact group, time period,
service, and command definitions that you
have defined in yodnost configuratiof
ile(s)

Authorization Requirements:

® You must bgauthorized for configuratioh
[informationjin order to view contact, contact
group, host group, time period, and command
definitions. You will also be able to view all
host and service definitions.

® |f you ardauthorized for alhost$you can view
all hostand service definitions.

® If you arqauthorized for alkervicepyou can
view all service definitions.

® |f you are arauthenticatedontactyou can
view all host and service definitions for which
you are aontact.

Command CGl

File Name: cmd.cgi

CGI Arguments:

Argument

Description

type=xxxx

This option allows you to specify what type of
definitions you would like to view. Valid option
include "hosts", "hostgroups", "contacts",

"contactgroups”, "timeperiods”, "commands",

and"services".

o7

Description:

This CGl allows you to send commands to the NetSaint process. Although this CGI has several arguments, you would
be better to leave them alone. Most will change between different revisions of NetSaint.|&idertded information

as a starting point for issuing commands.

Authorization Requirements:

® You must bgauthorized for systerommandsn order to issue commands that affect the NetSaint process
(restarts, shutdowns, mode changes, etc.).

® |f you ardauthorized for all hostommandyou can issue commands for all haatsl services.

® |f you ardauthorized for all serviceommandsyou can issue commands for all services.

® |f you are arauthenticatedcontactyou can issue commands for all hosts and services for which you are a
contact.

Notes:

® |f you have chosen not ficseauthenticatiojwith the CGls, this CGI wilhot allow anyone to issue commands to
NetSaint. This is done for your own protection. | would suggest removing this CGlI altogether if you decide not
to use authentication with the CGls.

® |n order for the CGI to issue commands to NetSaint, you will have to set the proper file and directory

permissions as describedtms FAQ

Extended Information CGI

File Name: extinfo.cgi

Description:

This CGl allows you to view NetSaint process information, host and service state statistics, host
and service comments, and more. It also serves as a launching point for sending commands to
NetSaint via thEommandCGl Although this CGI has several arguments, you would be better to
leave them alone - they are likely to change between different releases of NetSaint. You can access
this CGI by clicking on the 'Network Health’ and 'Process Information’ links on the side

navigation bar, or by clicking on a host or service link in the output

Authorization Requirements:

You must bgauthorized for systemformation)in order to view NetSaint process information.

If you ardauthorized for alhostgyou can view extended information for all hostel services.

If you ardauthorized for allservicepyou can view extended information for all services.

If you are arauthenticatedtontactyou can view extended information for all hosts and services for which you
are acontact.

Log File CGlI

X
Hrc- P [

femlwre

File Name: showlog.cgi

Description:
This CGI will display thdiog file] If you
havelog rotatiorjenabled, you can browse

notifications present in archived log files

by using the navigational links near the top

of thepage.

Authorization Requirements:

® You must bgauthorized for system
[informatiorjin order to view the logle.

History CGl

File Name: history.cgi

CGI Arguments:

Argument

Description

archive=x

This option allows you to browse notifications in
thex! latest log archive. A value of O will cause
the current log file to be used, a value of 1 will
cause the most recent archived log to be used,
soon...

and

oldestfirst

This option allows view notifications with older
entries at the top of the page and newer entries
the bottom. The CGI will normally reverse the Io
file so that newer log entries show up at the top
the page while older ones are at the bottom.

at

of

Description:
This CGl is used to display the history of problems with

CGI Arguments:

either a particular host or all hosts. The output is basicall

a subset of the information that is displayed byldkefile]
You have the ability to filter the output to display
only the specific types of problems you wish to see (i.e.

yArgument | Description
This will display the history of
host=all all hosts being monitored with

NetSaint

hard and/or soft alerts, various types of service and host

alerts, all types of alerts, etc.). If you hiwg rotation

enabled, you can browse history information present in
archived log files by using the navigational links near the

host=xxxx

This will display the history of
hostxxxx wherexxxxis the

short name of the host as defin
in thelhostconfiguratiorfile.

top of thepage.

Authorization Requirements:

® |f you ardauthorized for alhost$you can view history
information for all hostaind all services.

® |f you ardauthorized for allervicepyou can view history
information for all services.

type=x

This option allows you to
control which types of historica
alerts are displayed. Asis a
numerical value generated by {
CGl, I would suggest using the
dropdown box to select the typ
of alerts you want tgiew.

1%

® |f you are arauthenticatedontactyou can view history
information for all services and hosts for which you are a
contact.

statetype=x

This option allows you to
control whether soft or hard
alerts (or both) are displayed. A
X is a numerical value generatg
by the CGl, | would suggest
using the dropdown box to sele
the type of alerts you want to
view.

o

ct

archive=x

This option allows you to

browse the history information
in thexth latest log archive. A
value of 0 will cause the curren
log file to be used, a value of 1
will cause the most recent

archived log to be used, and sq
on...

oldestfirst

This option allows view history
information with older entries al
the top of the page and newer
entries at the bottom. The CGlI
will normally reverse the log filg
so that newer log entries show
up at the top of the page while
older ones are at the bottom.

Notifications CGI

File Name: notifications.cgi

Description:
This CGl is used to display host and service notification

CGI Arguments:
S

that have been sent to various contacts. The output is

Argument

Description

basically a subset of the information that is displayed by
thellog file CGll You have the ability to filter the output

This will display all

notifications that have been sgnt

nt

%)

to display only the specific types of notifications you host=all out for all hosts (and their
wish to see (i.e. service notifications, host notifications, assqciated s.ervices) .being
notifications sent to specific contacts, etc). If you have monitored withNetSaint
log rotati_o ena_bled, you can browse notificat_ions_ This will display all
present in archived log files by using the navigational notifications that have been se
links near the top of theage. out for hostxxxx(and its
host=xxxx associated services), whevexx
Authorization Requirements: is the short name of the host 3
defined in th¢hos}
® |f you ardauthorized for alhost$you can view notifications configurationfile.
for all hostsand all services. . This will display all service andl
® If you argauthorized for alservicepyou can view contact=all | host notifications that have
notifications for all gerwces. . - been sent out to atbntacts.
® |f you are arauthenticatectontactyou can view notifications

for all services and hosts for which you amepatact.

contact=xxxx|

This will display all service andl
host notifications that have
been sent out to contactxx
wherexxxxis the short name o
the contact as defined in the
[hos}configuratiorfile.

type=x

This option allows you to
control which types of
notifications are displayed. As
is a numerical value generated
by the CGlI, | would suggest
using the dropdown box to
select the types of notification$
you want toview.

archive=x

This option allows you to
browse notifications in theth
latest log archive. A value of O
will cause the current log file tp
be used, a value of 1 will caus
the most recent archived log tp
be used, and sm...

D

oldestfirst

This option allows view
notifications with older entries
at the top of the page and new
entries at the bottom. The CG
will normally reverse the log
file so that newer log entries
show up at the top of the pags
while older ones are at the
bottom.

er

Trends CGil

ek

File Name: trends.cgi

Description:

This CGl is used to create a graph of host or service states over an arbitrary period of time. In order
for this CGI to be of much use, you should enfdrgrotatiojand keep archived logs in the path
specified by thffog_archive_pailirective. The CGI uses Thomas Boutdgjglibrary (version

1.6.3 or higher) to create the trends image. If you can’t seem to find this CGl or if you have get

errors when trying to compile or run it, reidis FAQ

Authorization Requirements:

® |f you ardauthorized for alhostgyou can view trends for all hosiad all services.
® |f you ardauthorized for alkervicepyou can view trends for all services.
® If you are arauthenticateadtontactyou can view trends for all services and hosts for which you eoatact.

Availability Reporting CGl

File Name: avail.cgi

http://www.boutell.com/gd

Description:
This CGl is used to report on the availability of hosts and services over a user-specified period of

time. In order for this CGI to be of much use, you should efiagletatiorjand keep archived
logs in the path specified by thag_archive patldirective.

Authorization Requirements:

® |f you ardauthorized for alhost$you can view availability data for all hostad all services.

® |f you ardauthorized for alkervicepyou can view availability data for all services.

® |f you are arauthenticatedontactyou can view availability data for all services and hosts for which you are a
contact.

	
	NetSaint Documentation

	
	About NetSaint

	
	What's New in Version 0.0.7

	
	Scheduled Downtime

	
	Detection and Handling of State Flapping

	
	Installing NetSaint

	
	Installing The Web Interface

	
	Authentication And Authorization In The CGIs

	
	Configuring NetSaint

	
	Main Configuration File Options

	
	External Command File Permissions

	
	Host Configuration File Options

	
	CGI Configuration File Options

	
	Verifying Your NetSaint Configuration

	
	Starting NetSaint

	
	Stopping And Restarting NetSaint

	
	NetSaint Plugins

	
	Plugin Development Guidelines

	
	NetSaint Addons

	
	Theory of Operation

	
	Determining Status and Reachability of Network Hosts

	
	Network Outages

	
	Notifications

	
	Plugin Theory

	
	Service Check Scheduling

	
	State Types

	
	Time Periods

	
	Event Handlers

	
	External Commands

	
	Indirect Host and Service Checks

	
	Passive Service Checks

	
	Program Modes

	
	Redundant Network Monitoring

	
	Service Check Parallelization

	
	Volatile Services

	
	Notification Escalations

	
	Distributed Monitoring

	
	Monitoring Service and Host Clusters

	
	Service Dependencies

	
	Performance Data

	
	Using The Embedded Perl Interpreter

	
	Database Support

	
	Portsentry Integration

	
	TCP Wrapper Integration

	
	UCD-SNMP †NET-SNMP‡ Integration

	
	NetSaint Developer Documentation

	
	Status File Format

	
	Comment File Format

	
	State Retention File Format

	
	External Data API Overview

	
	External Status Data †XSD‡ Overview

	
	External Retention Data †XRD‡ Overview

	
	External Comment Data †XCD‡ Overview

	
	External Extended Data †XED‡ Overview

	
	External Object Data †XOD‡ Overview

	
	Neat Hacks and Tricks

	
	Frequently Asked Questions †FAQs‡

	
	Securing NetSaint

	
	Tuning NetSaint For Maximum Performance

	
	Using Macros In Commands

	
	NetSaint Status Levels

	
	Information On The CGIs

