
Programming with GPGME and GPGAppKit on OS X

Gordon Worley

February 28, 2004

Programming with GPGME and GPGAppKit on OS X is Copyright 2003-2004 Mac GPG
Project. You may distribute verbatim copies, in whole or in part, so long as this copyright
information is preserved and no profit is earned, although you may charge fees to cover the
costs of distribution. The author reserves the right to distribute copies of this book at a
profit and to allow others to do so upon request.

2

Preface

On a recent trip to the bookstore I found a shelf of cryptography books with titles like
Cryptography Decrypted and Cryptography Demystified. It reminded me that cryptography
is popular, especially relative to other information theory topics (you don’t find pulpy titles
on books about Shannon Information or block coding). Cryptography has a mystique that
attracts people and makes them feel like cloak-and-dagger spies or important people with
secrets to protect. It’s a form of escapism for the computer enthusiast.

The reality, though, is not so romantic. Cryptographers spend lonely hours cryptanalyz-
ing, auditing code, and calculating, not saving the world from terrorists. Faced with it,
most people would much rather just use cryptography like the spy than research it like the
cryptographer. That’s where programmers come in: making the spy tools.

My goal for this book is to teach you how to add cryptography to your programs because
I believe that many applications would benefit from cryptographic features. Although the
scope of this book is limited to Cocoa applications on Mac OS X, GPGME and other libraries
are available for most systems. Even if my technical advice does not help you, I hope that
it inspires you to investigate cryptographic integration on your development platform.

–Gordon Worley
25 May, 2003

3

4

Contents

1 Getting Started 7

1.1 Prerequisites . 7

1.2 GPGME . 7

1.3 GPGME, GPGAppKit, and Mac OS X . 8

1.4 How to use this book . 8

1.5 A work in progress . 9

2 Simple GPGME Example 11

2.1 Creating SimpleGPGMEExample . 11

2.2 User Interface . 11

2.3 Architecture . 12

2.4 Libraries . 13

2.5 Code . 13

2.6 Code Analysis . 16

2.7 Exercises . 20

3 Simple GPGAppKit Example 21

3.1 Creating SimpleGPGAppKitExample . 21

5

6 CONTENTS

3.2 User Interface . 21

3.3 Architecture . 22

3.4 Libraries . 22

3.5 Code . 23

3.6 Code Analysis . 26

3.7 Exercises . 29

Chapter 1

Getting Started

Before we can start writing cryptography into our applications, we must cover some basics.
There is a lot of material written about Mac OS X programming and cryptography, so
although I’ve chosen the book format, you should treat it more like a paper.

1.1 Prerequisites

This book is intended for Mac OS X developers who want to add public key cryptography to
their applications. I assume that you are familiar with public key cryptography, PGP (Pretty
Good Privacy), and GnuPG (GNU Privacy Guard). If you are not, I suggest reading the
GNU Privacy Handbook, available Online at http://www.gnupg.org/gph/en/manual.html.
You should also be familiar with development on Mac OS X using Cocoa, Objective-C, and
Apple’s developer tools..

1.2 GPGME

GPGME is short for GnuPG Made Easy, a library that “provides a High-Level Crypto
API for encryption, decryption, signing, signature verification and key management.”[1]
It is the technology that sits between our Cocoa frameworks and GnuPG. Although we
will not deal directly with the GPGME C library (other than to install it), you should be
familiar with its existence. You can learn more about it by visiting GPGME’s Website:
http://www.gnupg.org/(en)/related_software/gpgme/index.html.

7

8 CHAPTER 1. GETTING STARTED

1.3 GPGME, GPGAppKit, and Mac OS X

The GPGME C library is not object oriented, nor does it fit the Objective-C idiom. To re-
solve these dilemmas, Stéphane Corthésy et al. created GPGME.framework, an Objective-C
wrapper for the GPGME C library that works with Cocoa and GNUstep. GPGME.framework
provides all of the functionality of the C library (plus a few added features), but in a way
that is conductive to Objective-C programming.

Because we have two libraries called GPGME, naming can get confusing. As used in this
book, ‘GPGME’ refers to the idea of GPGME: an API for cryptographic functions that
works with GnuPG/OpenPGP and possibly other programs/protocols. ‘libgpgme’ is the
GPGME C library distributed by the GnuPG Project. ‘GPGME.framework’ refers to the
Cocoa framework from the Mac GPG Project.

While GPGME.framework provides the logical components for public key cryptography, it
lacks common user interface elements for getting data from the user. Often applications
using GPGME need to ask for the same data repeatedly: passphrase, recipients, sign-
ers. In response, the Mac GPG Project developed GPGAppKit, a Cocoa framework of
user interface elements to obtain these data. GPGAppKit returns data as objects from
GPGME.framework, so that the two frameworks work together seamlessly.

To follow the examples in this book, you need to download and install GPGME and GP-
GAppKit. Both are available from http://macgpg.sourceforge.net/.

This version of the book is based on GPGME.framework 0.3.14 and GPGAppKit.framework
A1.

1.4 How to use this book

The chapters of this book contain source code and exercises to help you learn. I suggest
that you work through all of the examples and exercises at least once to familiarize you
with GPGME.framework’s and GPGAppKit.framework’s objects and methods. If, however,
you are using them as a reference, you will find the sample projects on the Web at http:

//macgpg.sourceforge.net/GPGME_Book/.

You should work through this book sequentially. Each chapter builds on concepts explained
in the previous chapters and assumes that you are already familiar with the information
introduced earlier.

1.5. A WORK IN PROGRESS 9

1.5 A work in progress

This book is still being written. It will eventually contain more chapters explaining how
to work with GPGME and GPGAppKit and general information on secure programming
and user interface design. Chapter order may change between editions, with new chapters
displacing older ones. If you find typos or have suggestions for future editions, please e-mail
them to Gordon Worley, redbird@mac.com.

10 CHAPTER 1. GETTING STARTED

Chapter 2

Simple GPGME Example

The purpose of this chapter is to familiarize you with GPGME and its workings. After you
read this chapter you should have a general feeling for working with GPGME.framework
and where to look to learn more. Out of necessity, the user interface for our example
application in this chapter, SimpleGPGMEExample, is rudimentary. In Chapter 3, you will
use GPGAppKit to create more friendly user interfaces.

2.1 Creating SimpleGPGMEExample

Start ProjectBuilder and create a Cocoa application project called SimpleGPGMEExample.
You can save it anywhere in your filesystem, but I recommend creating a special folder for
the examples in this book (‘˜/Developer/GPGME Book’, for example) to help you remember
where they are. Nothing sucks quite as much as forgetting where you saved your code.

2.2 User Interface

When the SimpleGPGMEExample project opens, open MainMenu.nib. In InterfaceBuilder,
construct an interface that looks like the one in Figure 2.1. The interface is made of NS-
TextFields (some in the label style, others in the text entry box style) and one NSButton.

Note that the text field next to the “Passphrase:” label is an NSSecureTextField, not a
NSTextField. Although you can use an NSTextField for testing, an NSSecureTextField will
echo bullets. It is highly recommended that you use an NSSecureTextField, even during
development, so that onlookers will not be able to spy your passphrase.

11

12 CHAPTER 2. SIMPLE GPGME EXAMPLE

Figure 2.1: SimpleGPGMEExample User Interface

Don’t worry about anything else. This is just a simple interface so you can play around with
GPGME.framework. In Chapter 3 we will discuss building a more user friendly interface.

2.3 Architecture

In InterfaceBuilder, create a new subclass of NSObject called GPGMEController. Add to
it 4 NSTextField outlets—data, signer, recipient, and output—and an NSSecureTextField
outlet named passphrase. Also add an action called signAndEncrypt:. Instantiate GPGME-
Controller. Connect GPGPMEController’s outlets to the similarly labled text fields (output
connects to the NSTextField next to the ‘Output:’ label, etc.). Draw a connection from the
button to GPGMEController and make signAndEncrypt: the target of your button. Create
the files for GPGMEController and add them to SimpleGPGMEExample.

You are done with InterfaceBuilder for the rest of this example. You can safely close it if
you’ve done everything up to this point correctly.

2.4. LIBRARIES 13

2.4 Libraries

Back in ProjectBuilder, you need to link to GPGME.framework. From the Project menu,
choose Add Frameworks... and find GPGME.framework on your hard drive (probably in the
build directory of wherever you put the GPGME project when you got it from the Web or
CVS). You should have built it using the EmbDeployment style, but if not rebuild it in that
style. Onced linked, add a build phase to copy GPGME.framework into the Frameworks
directory of SimpleGPGMEExample.app.

Embedding GPGME

I strongly encourage you to embed GPGME.framework in your applications.
It simplifies the install process and it ensures that your application always has
a working version of GPGME.framework present. If you depend on a copy in a
Frameworks directories outside your application, bugs may result from incompatible
but installed versions of GPGME or lack of installed copy of GPGME. Including a
copy of GPGME in your application does not dramatically increase your applications
size and it only adds a few seconds to the time to download your application. By
including GPGME in your application you save everyone a lot of headaches at a
minimal cost.

See GPGME.framework’s documentation for more on this argument.

2.5 Code

First you need to modify GPGMEController.h to import the GPGME framework. Add the
second #import statement (the rest of the file should already look exactly like this):

/* GPGMEController */

#import <Cocoa/Cocoa.h>

#import <GPGME/GPGME.h>

@interface GPGMEController : NSObject

{

IBOutlet NSTextField *input;

IBOutlet NSTextField *output;

IBOutlet NSSecureTextField *passphrase;

IBOutlet NSTextField *recipient;

14 CHAPTER 2. SIMPLE GPGME EXAMPLE

IBOutlet NSTextField *signer;

}

- (IBAction)signAndEncrypt:(id)sender;

@end

Now you need to fill in GPGMEController.m as below. We will discuss what this code does
in the next section.

#import "GPGMEController.h"

@implementation GPGMEController

- (IBAction)signAndEncrypt:(id)sender

{

GPGContext *context = nil;

GPGRecipients *gpgRecipient = nil;

GPGKey *gpgSigner = nil;

GPGData *gpgData = nil;

GPGData *gpgOutput = nil;

NS_DURING

//initializers

context = [[GPGContext alloc] init];

gpgData = [[GPGData alloc] initWithString: [input stringValue]];

gpgRecipient = [[GPGRecipients alloc] init];

//get the recipients

[gpgRecipient addName: [recipient stringValue]];

//get the signers

gpgSigner =

[[context keyEnumeratorForSearchPattern: [signer stringValue]

secretKeysOnly: YES] nextObject];

[context stopKeyEnumeration];

//set up the context

[context addSignerKey: gpgSigner];

[context setPassphraseDelegate: self];

[context setUsesArmor: YES];

2.5. CODE 15

//do the GPG magic

gpgOutput = [context encryptedSignedData: gpgData

forRecipients: gpgRecipient

allRecipientsAreValid: nil

];

//display output

[output setStringValue: [gpgOutput string]];

NS_HANDLER

NSRunAlertPanel(@"Oops, you broke it.", @"%@",

nil, nil, nil, localException);

NS_ENDHANDLER

[context release];

[gpgData release];

[gpgRecipient release];

}

- (NSString *) context: (GPGContext *)context

passphraseForKey: (GPGKey *)key

again: (BOOL)again

{

return [passphrase stringValue];

}

@end

After completing GPGMEController.m, build the project and run SimpleGPGMEExam-
ple.app. The operation is simple: type a plaintext message in the input field, a search for a
secret key in the signer field (key id or fingerprint are best), the passphrase for the key in the
next field, and a search for a public key in the recipient field. Press the “Sign & Encrypt”
button to produce the cipher text in the output field.

Experiment with intentional errors. See what happens if you enter an invalid passphrase,
don’t specify a signer, don’t specify a valid recipient, or specify other potentially error causing
values.

16 CHAPTER 2. SIMPLE GPGME EXAMPLE

2.6 Code Analysis

#import "GPGMEController.h"

@implementation GPGMEController

- (IBAction)signAndEncrypt:(id)sender

{

GPGContext *context = nil;

GPGRecipients *gpgRecipient = nil;

GPGKey *gpgSigner = nil;

GPGData *gpgData = nil;

GPGData *gpgOutput = nil;

Here we initialize the variables to nil so that we only need to write the cleanup code once—
after the error handling code—to avoid memory leaks that would result if the memory
management were attempted inside the error handling code. By setting the variables to nil,
when an error is raised inside NS DURING, some of the variables may not be initialized, but
if they are set to nil then you can send them a release message which will be accepted and
ignored, rather than halting execution the way uninitialized variables sent a message would.

Although some of these variables will enter the autorelease pool, it’s good practice to initialize
them all to nil. It’s one less line of code to change if an autoreleased variable is reprogrammed
as a manually released variable.

NS_DURING

//initializers

context = [[GPGContext alloc] init];

gpgData = [[GPGData alloc] initWithString: [input stringValue]];

In any function using GPGME, the first step is to create a GPGContext instance. A GPG-
Context is like a gpg process; you can send a GPGContext commands much like you would
send gpg on the command line. The difference is that a GPGContext interacts with progra-
matic data structures rather than human typing.

A program can use as many contexts as you want, but in this case only one is necessary.
Assuming that certain conditions are preserved, you can share data between contexts, even if
they are in different threads. For example, you might search for keys in one thread, search for
recipients in another, and use cryptographic functions with the data collected from the first
two threads in yet another thread. Keep in mind, however, that certain user options may
prevent real multithreaded use of gpg (there may be a mutex on the keyrings, for example).

2.6. CODE ANALYSIS 17

GPGData is analogous to NSData, but specifically designed for use with GPGME. GPGData
has a different internal structure than NSData because libgpgme, which GPGME.framework
wraps, accepts data using specific data structures that could not be easily managed by
extending NSData. But GPGData and NSData work together; you can easily convert from
one to the other, or into several other Cocoa objects.

gpgRecipient = [[GPGRecipients alloc] init];

//get the recipients

[gpgRecipient addName: [recipient stringValue]];

GPGRecipients is an enumeration of public key specifiers, specifically for the purpose of
specifying the recipients of a message. You add keys by search string, which can be anything
that will find the key. If a search finds multiple keys, only the first one found will be used.
In fact, the search will stop after the first match is found, though you should not rely on
GnuPG to always return the same key first. Thus it is best to search for recipients using key
fingerprints since they have the fewest collisions.

In our code, we add the key specified by the search string in the recipients text field. Although
you can theoretically specify multiple recipients, SimpleGPGMEExample allows only one.
It is left as an exercise to develop a method for specifying multiple recipients (see §2.7).

//get the signers

gpgSigner =

[[context keyEnumeratorForSearchPattern: [signer stringValue]

secretKeysOnly: YES] nextObject];

[context stopKeyEnumeration];

Just as we need recipients, we need signers. gpgSigner is a GPGKey, which represents a
key and contains information about it, but not the actual key itself. We search the context
for keys, just as we would in Terminal with gpg and the –list-keys command, using the
GPGContext instance method keyEnumeratorForSearchPattern:secretKeysOnly:. It returns
an NSEnumerator of GPGKeys, but we are only interested in the first object for our example,
although you can sign data with multiple keys. You should be careful when you specify search
strings because, just as with GPGRecipients’s addName:, collisions can occur, although here
you’ll get all keys that match the search string rather than the one that happened to be
found first.

The second parameter of keyEnumeratorForSearchPattern:secretKeysOnly: determines whether
public or secret keys are returned. Signers on a GPGContext must be secret keys, so when

18 CHAPTER 2. SIMPLE GPGME EXAMPLE

obtaining signers the second parameter should always be YES. Setting it to NO is useful for
finding recipient keys.

In this example, it is important to send stopKeyEnumeration to context because a GPGCon-
text will continue to search for keys even after keyEnumeratorForSearchPattern:secretKeysOnly:
returns. If you want to use a GPGContext after a key search, you need to send it stopKeyEnu-
meration or else you will get a busy error. In later examples, when you use GPGAppKit to
find keys, you will not need to worry about stopping key enumeration: it will be stopped for
you.

//set up the context

[context addSignerKey: gpgSigner];

[context setPassphraseDelegate: self];

[context setUsesArmor: YES];

These lines set options for the GPGContext, just like you can set options when using gpg in
Terminal. addSignerKey: acts like –local-user or -u on the command line, adding a key to
the list of signers. The second line specifies the passphrase delegate. We’ll talk more about
this later. Third we set the GPGContext to use ASCII armor so that the output will be
‘human readable’—we’ll be able to post it to the output text field.

There are several more options available. See GPGME/GPGContext.h for them all.

//do the GPG magic

gpgOutput = [context encryptedSignedData: gpgData

forRecipients: gpgRecipient

allRecipientsAreValid: nil

];

This message signs and encrypts gpgData (taken from input). It is encrypted to gpgRecipient
and signed with the key we added in the previous code segment. The result is put in
gpgOutput, another GPGData instance.

The third parameter of encryptedSignedData:forRecipients:allRecipientsAreValid: is a pointer
to a BOOL that, after this method returns, points to a BOOL that is YES if all of the recip-
ients are valid. Here we choose to ignore it, but it’s important because you can only encrypt
to valid recipients. If you try to sign to an invalid recipient (a recipient that you don’t trust),
you won’t get an error, but you won’t get any output either. In real programs you should
check this value and notify the user if encryption fails or take preemptive steps to ensure
that it will always be YES (i.e. only allow the user to select valid recipients).

2.6. CODE ANALYSIS 19

//display output

[output setStringValue: [gpgOutput string]];

This part displays the data. We turn gpgOutput into a string, which only works because
we armored the output. If we had not, then gpgOutput could not convert to an NSString,
although you can still convert gpgOutput to an NSData instance without armor.

NS_HANDLER

NSRunAlertPanel(@"Oops, you broke it.", @"%@",

nil, nil, nil, localException);

NS_ENDHANDLER

GPGME.framework can raise a variety of errors. You’ll get errors when there is something
wrong with the data, the passphrase is incorrect, or some other strange thing happened.
Look at GPGME/GPGContext.h for a list of the errors that GPGContext can raise. Other
objects can also raise errors; see their header files for details. If you do not catch these errors
then your application will crash or, at least, fail to complete cryptographic tasks every time
something goes wrong.

[context release];

[gpgData release];

[gpgRecipient release];

}

At the beginning of this method we initialized all of our variables to nil. Now we take advan-
tage of that to send those variables that are not to be autoreleased a release message. This
is a useful technique because NS DURINGs can cause memory leaks if you don’t carefully
manage your data. A novice mistake with error handling in Cocoa is to put all memory al-
location and deallocation inside the error handling code, but this can lead to memory leaks
if an error occurs between the allocation and deallocation code.

You’re not crazy; this is a duplicate discussion. I feel, however, that correct memory man-
agement is important enough to warrant repeating the point.

- (NSString *) context: (GPGContext *)context

passphraseForKey: (GPGKey *)key

again: (BOOL)again

{

return [passphrase stringValue];

20 CHAPTER 2. SIMPLE GPGME EXAMPLE

}

@end

This is the delegate method for telling our GPGContext the passphrase (remember when
we set the passphrase delegate to self earlier?). We will use this method’s arguments with
GPGAppKit in a later example, but for now we return the value of the passphrase text field.
GPGContext will ask for the passphrase three times for any given command, just as gpg
would on the command line. In this case, even if it is incorrect, we just keep returning the
same passphrase, which, if it is wrong, will eventually raise a no passphrase error. Later we
will see how to handle each try individually.

2.7 Exercises

1. Change the output NSTextField to an NSTextView.

2. Add a way for the user to specify multiple recipients.

3. Check if all recipients are valid and report the result to the user.

Chapter 3

Simple GPGAppKit Example

In the last chapter we learned the basics of GPGME. In this chapter we will expand on
that knowledge, using GPGAppKit to build user-friendly interfaces to GPGME features in
applications.

3.1 Creating SimpleGPGAppKitExample

Start ProjectBuilder and create a new Cocoa application project called SimpleGPGAppKi-
tExample. If you are saving the examples from this book together, remember to create the
project in the appropriate directory.

3.2 User Interface

When SimpleGPGAppKitExample opens in ProjectBuilder, open MainMenu.nib. In Inter-
faceBuilder, construct an interface like the one in Figure 3.1 made of four NSTextFields and
one NSButton.

Although SimpleGPGAppKitExample and SimpleGPGMEExample have similar interfaces,
SimpleGPGAppKitExample initially asks only for the input data to sign and encrypt because
we will use GPGAppKit to get the rest of the information we need (recipient, signer, and
passphrase). In fact, most applications using GPGAppKit only need to provide a way to
input and output data; GPGAppKit does the rest.

21

22 CHAPTER 3. SIMPLE GPGAPPKIT EXAMPLE

Figure 3.1: SimpleGPGAppKitExample User Interface

3.3 Architecture

In InterfaceBuilder, create a subclass of NSObject called GPGAppKitController. It has two
NSTextField outlets—input and output—and one action named signAndEncrypt:. Instanti-
ate GPGAppKitController and connect its outlets to the appropriate text fields. Connect the
“Sign and Encrypt” button’s target to signAndEncrypt: on GPGAppKitController. Create
the files for GPGAppKitController and add them to SimpleGPGAppKitExample.

We are done with InterfaceBuilder for this example.

3.4 Libraries

Back in ProjectBuilder, link to the GPGME and GPGAppKit frameworks. From the Project
menu, choose Add Frameworks... and find GPGME.framework as you did for SimpleGPG-
MEExample. Then repeat the process for GPGAppKit.framework. Both should have been
built in the EmbDeployment style (if not, go back and do it). Then add a copy build phase
to copy both frameworks into SimpleGPGAppKitExample’s Framework directory.

As argued in §2.4(Embedding GPGME), you should embed these frameworks inside your
applications.

To use GPGAppKit, you must link to GPGME.framework in your application. GPGAppKit
depends on GPGME but does not copy GPGME into itself. Since GPGAppKit is of little
or no use without GPGME, this is a feature to reduce the size of your applications.

3.5. CODE 23

3.5 Code

Begin by modifying GPGAppKitController.h to import the GPGME and GPGAppKit frame-
works. Add the second and third import statements so that GPGAppKitController.h looks
like this:

/* GPGAppKitController */

#import <Cocoa/Cocoa.h>

#import <GPGME/GPGME.h>

#import <GPGAppKit/GPGAppKit.h>

@interface GPGAppKitController : NSObject

{

IBOutlet NSTextField *input;

IBOutlet NSTextField *output;

}

- (IBAction)signAndEncrypt:(id)sender;

@end

Now fill in GPGAppKitController.m as below. We will discuss what this code does in the
next section.

#import "GPGAppKitController.h"

@implementation GPGAppKitController

- (IBAction)signAndEncrypt:(id)sender

{

//from GPGME

GPGContext *context = nil;

GPGRecipients *gpgRecipient = nil;

GPGKey *gpgSigner = nil;

GPGData *gpgData = nil;

GPGData *gpgOutput = nil;

//from GPGAppKit

GPGSingleKeySelectionPanel *keySelectionPanel = nil;

NS_DURING

//initializers

context = [[GPGContext alloc] init];

24 CHAPTER 3. SIMPLE GPGAPPKIT EXAMPLE

gpgData = [[GPGData alloc] initWithString: [input stringValue]];

gpgRecipient = [[GPGRecipients alloc] init];

keySelectionPanel = [GPGSingleKeySelectionPanel panel];

//get the recipients

[keySelectionPanel setMinimumKeyValidity: GPGValidityMarginal];

[keySelectionPanel setListsSecretKeys: NO];

[keySelectionPanel setPrompt: @"Choose recipient"];

[keySelectionPanel runModalForKeyWildcard: nil

usingContext: context];

[gpgRecipient addName:

[[keySelectionPanel selectedKey] fingerprint]];

//get the signers

[keySelectionPanel resetToDefaults];

[keySelectionPanel setMinimumKeyValidity: GPGValidityUltimate];

[keySelectionPanel setListsSecretKeys: YES];

[keySelectionPanel setPrompt: @"Choose signer"];

[keySelectionPanel runModalForKeyWildcard: nil

usingContext: context];

gpgSigner = [keySelectionPanel selectedKey];

//set up the context

[context addSignerKey: gpgSigner];

[context setPassphraseDelegate: self];

[context setUsesArmor: YES];

//do the GPG magic

gpgOutput = [context encryptedSignedData: gpgData

forRecipients: gpgRecipient

allRecipientsAreValid: nil

];

//display output

[output setStringValue: [gpgOutput string]];

3.5. CODE 25

NS_HANDLER

NSRunAlertPanel(@"Oops, you broke it.", @"%@",

nil, nil, nil, localException);

NS_ENDHANDLER

[context release];

[gpgData release];

[gpgRecipient release];

}

- (NSString *) context: (GPGContext *)context

passphraseForKey: (GPGKey *)key

again: (BOOL)again

{

GPGPassphrasePanel *ppanel = [GPGPassphrasePanel panel];

if (again)

{

[ppanel runModalWithPrompt:

[NSString stringWithFormat: @"Try again: %@, %@",

[key userID], [key shortKeyID]

]

];

}

else

{

[ppanel runModalWithPrompt:

[NSString stringWithFormat: @"Enter passphrase: %@, %@",

[key userID], [key shortKeyID]

]

];

}

return [ppanel passphrase];

}

@end

The program is done. Compile and run it. See what kind of errors you can generate,
especially by experimenting with GPGAppKit’s dialogs.

26 CHAPTER 3. SIMPLE GPGAPPKIT EXAMPLE

3.6 Code Analysis

Because GPGAppKitController.h and GPGMEController.h are very similar, there is no need
to reanalyze some sections of the code. Below we know when sections of the code have been
skipped. Points addressed in the previous chapter are not repeated here.

First we skip the beginning of GPGAppKitController’s implementation to the first new line:

//from GPGAppKit

GPGSingleKeySelectionPanel *keySelectionPanel = nil;

We have added only one variable, keySelectionPanel, to the method variables needed in
GPGMEController’s signAndEncrypt:. Using GPGAppKit does not change how you apply
cryptographic functions to data, only how you gather information from the user.

NS_DURING

//initializers

context = [[GPGContext alloc] init];

gpgData = [[GPGData alloc] initWithString: [input stringValue]];

gpgRecipient = [[GPGRecipients alloc] init];

keySelectionPanel = [GPGSingleKeySelectionPanel panel];

The last line creates a GPGSingleKeySelectionPanel, which provides a dialog, as seen in Fig-
ure 3.2, with a pop-up list of keys to choose from. To initialize keySelectionPanel we send the
class GPGSingleKeySelectionPanel a panel message. Unless you have a good reason not to,
you should always use this class method to create instances of GPGSingleKeySelectionPanel
because the alloc init sequence will not create a GPGSingleKeySelectionPanel instance ready
for immediate use. See the source code of GPGAppKit for details.

//get the recipients

[keySelectionPanel setMinimumKeyValidity: GPGValidityMarginal];

[keySelectionPanel setListsSecretKeys: NO];

[keySelectionPanel setPrompt: @"Choose recipient"];

[keySelectionPanel runModalForKeyWildcard: nil

usingContext: context];

[gpgRecipient addName:

[[keySelectionPanel selectedKey] fingerprint]];

3.6. CODE ANALYSIS 27

Figure 3.2: A GPGSingleKeySelectionPanel in action

Here we use keySelectionPanel to ask the user for a recipient, but first we must set criteria
that specify what keys to display to the user. We want to show only keys with at least
marginal validity because less valid keys are invalid recipients and will cause encryption to
fail. Rather than inform the user later that they picked an invalid recipient, we can show
them only choices that will have the desired effects. This follows the secure interface design
principles described in [2].

We also specify not to list secret keys, i.e. to list public keys. You can only encrypt to public
keys, so it makes little sense to list secret keys when asking for recipients.

Next we set the prompt to explain the choice the user will make with keySelectionPanel:
selecting a recipient. It is important in secure systems that you let the user know clearly
and simply what every choice means.[2]

The method runModalForKeyWildcard:usingContext: creates a modal dialog version of key-
SelectionPanel, though you can also display it as a sheet and as a relative modal dialog (a.k.a.
a modal sheet). The first parameter is a key search pattern and is ‘optional’: you can pass
it nil if you want to list all keys meeting the other criteria. The second argument, though,
must be a valid GPGContext. Otherwise keySelectionPanel will not display any keys and
may raise errors.

The method selectedKey returns the users choice as a GPGKey instance. We use its finger-
print to add it as a recipient because fingerprints rarely collide.

//get the signers

[keySelectionPanel resetToDefaults];

[keySelectionPanel setMinimumKeyValidity: GPGValidityUltimate];

[keySelectionPanel setListsSecretKeys: YES];

[keySelectionPanel setPrompt: @"Choose signer"];

28 CHAPTER 3. SIMPLE GPGAPPKIT EXAMPLE

[keySelectionPanel runModalForKeyWildcard: nil

usingContext: context];

gpgSigner = [keySelectionPanel selectedKey];

To save memory, we reuse keySelectionPanel to get the signer. First we reset its options to
default, as they were when keySelectionPanel was initialized. Without resetToDefaults some
of the key search criteria from the last use might bleed over into this use. Since the user is
looking for a signing key, we ask for secret keys with ultimate validity. This does not check,
though, if they key is actually capable of signing, which is left as an exercise to the reader.

The rest of this method is identical to the method of the same name in GPGMEController
from Chapter 2 because GPGAppKit only affects how you get information from the user,
not what information you get from the user.

- (NSString *) context: (GPGContext *)context

passphraseForKey: (GPGKey *)key

again: (BOOL)again

{

GPGPassphrasePanel *ppanel = [GPGPassphrasePanel panel];

if (again)

{

[ppanel runModalWithPrompt:

[NSString stringWithFormat: @"Try again: %@, %@",

[key userID], [key shortKeyID]

]

];

}

else

{

[ppanel runModalWithPrompt:

[NSString stringWithFormat: @"Enter passphrase: %@, %@",

[key userID], [key shortKeyID]

]

];

}

return [ppanel passphrase];

}

@end

3.7. EXERCISES 29

This method uses a GPGPassphrasePanel instance to ask the user for the passphrase. GPG-
PassphrasePanel provides a simple prompt and NSSecureTextField to enter the passphrase
for the key (see Figure 3.3).

We ignore the first argument, a GPGContext instance, because we have no use for it in
our example. The second argument, a GPGKey instance representing the key that the first
argument needs a passphrase for, provides information to tell the user what key a passphrase
is needed for. Because many users have multiple keys that can sign or may be signing a
message using multiple keys, it is necessary to identify which key passphrase is requested. It
is also good secure user interface design, because it helps the user know exactly what to do,
rather than forcing them to make guesses.

Figure 3.3: A GPGPassphrasePanel in action

Changing this method to use GPGPassphrasePanel also gives the user multiple tries to enter
their password correctly, although this feature is not exclusive to GPGPassphrasePanel: you
could write your own passphrase request interface that allowed for multiple tries. We use
the third argument to change the message displayed to the user, to let them know if they are
trying to enter their passphrase again after an unsuccessful try or if they are entering their
passphrase for the first time. If you do not say that the user failed to enter their passphrase
correctly when asking the second or third time, they may believe that it was a program
rather than user error producing the additional requests.

3.7 Exercises

1. Let the user specify multiple recipients and signers.

2. Add a button to reverse the process: take cipher text as input, decrypt it to output.

3. Only display choices for signer key(s) that are capable of signing.

30 CHAPTER 3. SIMPLE GPGAPPKIT EXAMPLE

Bibliography

[1] Koch, Werner. ”GPGME”. nuP.org. 20 October 2002.
<http://www.gnupg.org/(en)/related software/gpgme/index.html>. (3 June 2003).

[2] Yee, Ka-Ping. ”User Interaction Design for Secure Systems”. 3 December 2002.
<http://www.sims.berkeley.edu/ ping/sid/uidss.pdf>. (17 June 2003).

31

About the Author
Gordon Worley is the founder and former administrator of the Mac GPG Project. He is a
senior at the University of Central Florida, earning a B.S. in Computer Science. He works
at UCF’s Writing Center and on various grants. He intends to earn a Ph.D. in computer
science.

You can e-mail him at redbird@mac.com or visit his Website at http://homepage.mac.

com/redbird/.

32

Colophon
This book was written using iTEXMac and typeset with LATEX. Any oddities in the type-
setting are the fault of the author (please report them or, better yet, suggest how to fix
them).

Animals not on the cover of this book include a gnu, a duck, a platypus, a lama, a bald
eagle, a golden retriever, a school of tilapia, a sloth, an etropus, and a tree frog.

33

Index
You may be wondering where the index is. Sorry, no index is currently available, but it will
exist in a future edition of this book.

34

