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This paper proposes the t-class of SOBER stream ciphers: t8, t16 and t32. t8, t16 and
t32 offer 64-, 128- and 256-bit key strength respectively. The t-class ciphers are based
on the same principles as the original SOBER family: SOBER [17], SOBER-II [18],
S16 and S32 [19], utilising the structure SOBER-II and S16 are based. The t-class
ciphers are software stream ciphers designed for software implementation. Changes
between the t-class and the original SOBER family are centred around constructing a
stronger non-linear filter and more secure key loading. Also, t32 is now based on the
same structure as t8 and t16 (S32 had a different structure). Much of the analysis of
SOBER-II and S16 applies to the t-class; this paper discusses the applications of such
analyses to the t-class and introduces further analyses. The output streams from these
ciphers have proven to perform well in all statistical tests.

1. Introduction

The t-class of SOBER ciphers: t8, t16, and t32; are fast, software-oriented stream
ciphers designed for implementation on a general purpose CPU. t8, t16 and t32 is
designed for keys up to 64, 128 and 256 bits in length respectively. The cipher tw,

{8,16,32}w ∈ , is designed for w-bit processors, uses operations on w-bit words and
accepts a secret session key with up to w bytes. For example, t8 is designed for 8-bit
processors, the operations in t8 act byte-wise and the session key can be up to 8 bytes
(64 bits) in length. Table 1 compares the t-class ciphers. The t-class ciphers are based
on the same principles as the original SOBER family: SOBER [17], SOBER-II [18],
S16 and S32 [19].

Encryption Speed (Mbps)Cipher Maximum Key Length
(bits) Unix 200 Pentium 233

t8 64 ~25 ~24
t16 128 ~44 ~25
t32 256 ~76 ~80

Table 1. Maximum key length and encryption speed for the t-class ciphers.
The encryption speed was measured on a 200MHz Sun Ultra Sparc and a
233MHz Pentium using unoptimised code.
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The SOBER family originated with the design of SOBER [17]: a software stream
cipher designed to meet the needs of embedded applications such as voice encryption
in wireless telephones which place severe constraints on the amount of processing
power, program space and memory available for software encryption algorithms.
Since most of the mobile telephones in use incorporate a microprocessor and memory,
a software stream cipher that is fast and uses little memory would be ideal for this
application. Many of the techniques used for generating the stream of pseudo-random
bits are based on Linear Feedback Shift Registers (LFSRs) over the Galois Finite
Field of order 2. As discussed in Section 2, such ciphers are difficult to implement
efficiently on a general purpose CPU. SOBER family ciphers overcome this dilemma
by utilising a LFSR defined over (2 )wGF  and a number of techniques to greatly
increase the generation speed of the pseudo-random stream in software on a
microprocessor. Following various analyses [1,3,5,9] of SOBER, the algorithm was
updated to SOBER-II [18], and two SOBER variants: S16 and S32; were proposed
[19]. S16 is a straightforward enhancement of SOBER to 16-bit wide arithmetic,
while S32 is an extension of the design principles of SOBER to 32-bit wide
arithmetic. Further analyses of SOBER-II are found in [2,4,10].

These analyses of SOBER-II found attacks that are specific to the overall structure
of the cipher, rather than exploiting a weakness of the individual components used in
the cipher. It is relatively simple to determine the security of the cipher formed by
replacing the 8-bit words by 16-bit or 32-bit words. In designing the t-class ciphers
we aimed to provide ciphers which utilized key of up to 64, 128 and 256 bits in
length, and for which there is no know attack with complexity less than an exhaustive
key search. The best attack on SOBER-II has a complexity in excess of a 64-bit
search; the best attack on a 16-bit  (32-bit) version of this cipher would then have
complexity in excess of 128-bit (256-bit) key search. Therefore, we decided that the t-
class should preserve the overall structure used in SOBER-II. As SOBER-II has been
the subject to public scrutiny for some time, this also gives us some confidence in the
structure being used.

 The t-class stream ciphers have four components: key loading, an LFSR, a non-
linear filter (NLF) and stuttering, as shown in Figure 1.  The key loading sets the 17
words in the register of the LFSR to an initial state derived from the key. In some
cases a re-synchronisation key or frame key is used during key loading. This is
discussed in further detail in Section 5. The LFSR uses a linear feedback function to
construct a stream of words from the initial state; this stream of words is the LFSR
stream { }ns . The process of producing a new word in the LFSR stream is called a
cycle of the LFSR. The purpose of the NLF is to disguise the linearity in the LFSR
stream. After every cycle of the LFSR, the NLF combines words from the register in a
non-linear function; the outputs form the NLF stream { }nv . The stuttering uses
occasional NLF stream words to select NLF stream words to be used in the key
stream { }jz .1

The t-class cipher differ from the original SOBER family in the following areas:
• t32 now uses the same structure as the rest of the t-class, while S32 had a

different structure to SOBER-II and S16.
                                                       
1 This process is also known as decimation.



The t-class of SOBER Stream Ciphers, DRAFT: October 12, 1999

The t-class of SOBER Stream Ciphers, DRAFT: October 12, 1999

3

• The NLF has been significantly strengthened with the use of a nonlinear S-
box and the inclusions of a key-dependent constant as an additional variable.

• The key loading has changed in two ways.
• The frame is now loaded as if it were a 4-octet key.
• The key loading has been strengthened to eliminate algebraic

relationships that existed between words of the initial state of the LFSR
in SOBER-II.

The paper is set out as follows. First, the LFSRs used in the t-class are defined in
Section 2. Section 3 describes the NLF and explains how the overall structure of the t-
class was found. Section 4 describes the stuttering and gives some results regarding
the period of the key stream. The key loading is described in Section 5. Section 6
considers the memory requirements and performance results for the t-class, and an
overall security analysis is provided in Section 7.

Session
Key

Frame Key

Key
Loading

Initial State Linear
Feedback

Shift
Register

LFSR
stream

NLF
stream

Non-Linear Filter

Key
stream

{ }ns

{ }nv

{ }jz

Stuttering

Figure 1. The components of the t-class SOBER stream ciphers.

2 The Linear Feedback Shift Register

A linear feedback shift register (LFSR) is typically based on a recurrence relation
over the Galois Field of order 2 (GF(2)). The output sequence (of bits) is defined by

1 1 2 2 1 1 0n k k n k k n k n ns c s c s c s c s+ − + − − + − += + + + +L , (2.1)
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where ns  is the n-th output of the sequence, the constant coefficients ic , 0 1i k≤ ≤ − ,
are elements of (2)GF , that is, single bits, and k is called the order of the recurrence
relation.

The LFSR is typically represented by the polynomial
1 2

1 1 2 1 0( ) k k k
k kp x x c x c x c x c− −
− −= + + + + +L , (2.2)

where 1( )p x  indicates that multiplication and addition are over 1(2 )GF . The
operations involved, namely shifting and bit extraction, are efficient in hardware but
inefficient in software, especially if the length of the shift register exceeds the length
of the registers of the processor in question. In addition, only one bit of output is
generated for each set of operations, which again is inefficient use of the general
purpose CPU. There are a large number of different stream ciphers that utilise LFSRs
as their underlying mechanism; for good surveys, see [12] or [14].

2.1 LFSR over GF(2w)

LFSRs can operate over any finite field, and can be made more efficient in software
by utilising a finite field more suited to the processor. Particularly good choices for
such a field are the Galois Field with 2w elements (GF(2w)), where w is related to the
size of items in the underlying processor, usually bytes or 16- or 32-bit words. The
elements of this field and the coefficients of the recurrence relation occupy exactly
one unit of storage and can be efficiently manipulated in software. In the meantime,
the order k of the recurrence relation that encodes the same amount of state is reduced
by a factor of w.

The field (2 )wGF  can be represented (the standard representation) as the modulo
2 coefficients of all polynomials with degree less than w. That is, an element a of the
field is represented by a w-bit word with bits 1 2 1 0( , , , , )w wa a a a− − K , which represents
the polynomial

1 2
1 2 1 0

w w
w wa x a x a x a− −

− −+ + + +L .

The addition operation for such polynomials is simply addition modulo two (XOR)
for each of the corresponding coefficients; the additive identity is the polynomial with
all coefficients 0. Multiplication in the field is polynomial multiplication with modulo
2 coefficients, with the resulting polynomial being reduced modulo an irreducible
polynomial of degree w . The multiplicative identity element is

1 2 1 0( , , , , ) (0,0, ,0,1)w wa a a a− − =K K . The choice of an irreducible degree w
polynomial alters the way elements of the group are mapped into encoded words on
the computer, but does not otherwise affect the actual group operations. The original
SOBER family and the SOBER t-class ciphers use the irreducible polynomials shown
in Table 2.2

                                                       
2 The polynomials used here are those chosen by Mathematica for its default representation of

the finite fields. The fields resulting from different choices of irreducible polynomials are
isomorphic, and so the representation is largely irrelevant to the subsequent analysis.
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w Irreducible Polynomial used in tw Hexadecimal Representation
8 8 6 3 2 1x x x x+ + + + 0x14D

16 16 14 12 7 6 4 2 1x x x x x x x x+ + + + + + + + 0x150D7
32 32 24 16 8 6 5 2( 1)( 1)x x x x x x x+ + + + + + + 0x165656565

Table 2: The irreducible polynomials used in tw, {8,16,32}w ∈ .

Now that there is a known representation for the elements of the underlying field
which can be stored in a single computer unit, the LFSR can be specified in terms of
bytes or words instead of bits, and successive output values will also be those units
rather than bits. The feedback function is still of the form of equation (2.1), however
the values ns  and the coefficients ic  are elements of (2 )wGF , rather than bits, and

addition and multiplication performed over (2 )wGF  as described above. Cycling the
LFSR requires a number of constant multiplication operations followed by XOR of
these terms. Note that multiplication by 0 simply means ignoring the corresponding
element of the register, while multiplication by 1 requires no computation, as the
output (of the multiplication) is the same as the input. Thus, to enable an efficient
implementation, the multiplication constants ic , 0 1i k≤ ≤ − , are chosen to be 0 or 1
most of the time. Multiplication with any other constants ic  is implemented using
pre-calculated tables stored in read-only memory, see [16,18] for details.

The t-class ciphers use LFSRs of the form

17 15 4n n n ns s s sα β+ + += ⊕ ⊕ , (2.3)

where ⊕  denotes addition over (2 )wGF  (equivalent to w-bit XOR), multiplication is
performed over (2 )wGF , and ,α β  are non-zero. This is the same form as used in
SOBER-II and S16, indeed the feedback function for t8 (t16) is identical to that used
in SOBER-II (S16). The feedback functions are shown in Table 3. The LFSR is
represented by a polynomial over (2 )wGF :

17 15 4( )wp x x x xα β= ⊕ ⊕ ⊕ , (2.4)

where the subscript w indicates that the addition and multiplication is over (2 )wGF .

w Feedback Function for tw
8 17 15 40xCE 0x63n n n ns s s s+ + += ⊕ ⊕

16 17 15 40xE382 0x67C3n n n ns s s s+ + += ⊕ ⊕
32 17 15 4 0xC2DB2AA3n n n ns s s s+ + += ⊕ ⊕

Table 3: The feedback functions for the t-class, where ⊕  denotes w-bit
XOR and ⊗  denotes multiplication over (2 )wGF .

The LFSR over the field (2 )wGF  is mathematically equivalent to w parallel shift
registers over (2)GF  of length equivalent to the total state 13w, each with the same



The t-class of SOBER Stream Ciphers, DRAFT: October 12, 1999

The t-class of SOBER Stream Ciphers, DRAFT: October 12, 1999

6

recurrence relation but different initial state [10]. Let the polynomial 1( )p x  represent
the LFSR over (2)GF . The multiplication constants chosen minimise the number of
coefficient not equal to one, such that the following properties are satisfied.

• The LFSR has maximum length period. The period has a maximum length
of 13(2 1)w −  when 1( )p x  is a primitive polynomial of degree 13w, that is, it

divides 1dx + , for 132 1wd = − , but not for any d that divides 13(2 1)w − .

• Approximately half of the coefficients of 1( )p x are 1. This condition is ideal
for maximum diffusion and strength against cryptanalysis.

The LFSR stream is never required in its entirety. To cycle the LFSR, only those
elements 16, ,n ns s +K  are required. After n cycles of the LFSR, it is only necessary to
preserve the elements 16, ,n ns s +K : the value of these elements is called the state of the
register. The state of the register corresponding to the elements 16, ,n ns s +K  at any
given instant in time is denoted 0 16, ,r rK . When the LFSR is cycled, the values in
positions 0 4,r r  and 15r  ( 4,n ns s +  and 15ns + ) are used to determine 17ns + . The values in
positions 1 16, ,r rK  are shifted to the positions 0 15, ,r rK  respectively (that is, 1i ir r += ,
15 0i≥ ≥ ) and 16r  is set to the value of 17ns + . The NLF then uses the values in the
register as input to the nonlinear function (see Figure 2), as described in the following
section. The implementation of the LFSR can be further enhanced using techniques
discussed in [16].

3 The Non-linear Filter

Much of the cryptographic security of the t-class SOBER family resides in the non-
linear filter (NLF) used to defend against attacks on the linear feedback or stuttering
phase. It is therefore important to make this function as strong as possible without
compromising the performance of the cipher.
The NLF takes the values from certain positions in the register as inputs; as in
SOBER-II and S16, the t-class ciphers use the register elements 0 1 6 13 16, , , ,r r r r r as
inputs. As the LFSR is cycled before the NLF is applied, the NLF stream word nv
depends on LFSR stream words 1 2 7 14, ,n n n ns s s s+ + + +  and 17ns + .  The t-class NLF also
uses a key-dependent constant word called Konst as an input value. This value is
derived immediately after the secret session key is loaded, and remains the same even
if the frame number changes.

In designing the NLF we gave ourselves certain restrictions. The processors for
which the t-class ciphers are designed are likely to have restrictions on the amount of
ROM available. Thus these ciphers can afford to use a S-box in the NLF, although it
would be preferable for the S-box to use only a small amount of memory; we restrict
the S-box to containing only 256 entries where each entry is a w-bit word. The NLF
should also be balanced (that is, every output word occurs with equal probability).
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Furthermore, we place the requirement if any five of the six inputs (including Konst)
are fixed then every value for the remaining input corresponds to a unique output.

Linear
Feedback

Shift
Register

Konst

wf

Non-Linear
Filter

nv

St
ut

te
ri

ng

jz

Figure 2. The block structure of the t-class ciphers

 The NLF chosen for the t-class is of the form

0 16 1 6 13(( ( ) ) )n wv f r r r r Konst r= + + + ⊕ + , (3.1)

as shown in Figure 2, where addition is modulo 2w , and the function wf  changes for
each value of w. In terms of LFSR stream words,

1 17 2 7 14(( ( ) ) )n w n n n n nv f s s s s Konst s+ + + + += + + + ⊕ + . (3.2)

The function wf  serves three purposes. Firstly, it removes the linearity in the least
significant bit and adds significantly non-linearity to the remaining bits. Secondly, it
ensures that the addition of 0r  and 16r  does not commute with the addition of 1r  and

6r . Thirdly it ensures that every bit of the output of the NLF depends on every bit of

0r  and 16r .
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XORing the value Konst into the NLF has two purposes. Firstly, it increasing the
complexity of any attack (excluding exhaustive key search) as there are now 162
possible NLF functions. Secondly, the Konst is XORed (rather than added) so as to
lower the probability of the addition of 13r  commuting with the addition of 1r  and 6r .
There is still a small probability that the operations will commute, but this probability
is low and relies on the value of Konst. This issue requires further analysis.

3.1 The Function 8f  used in t8

The function 8f  used in t8 simply uses the S-box (or f-table) used in the Skipjack
cipher.3 That is, if SJ denotes the SkipJack S-box, then 8 ( ) ( )f X SJ X= . This S-box
was chosen as it is high nonlinear, has been available for public scrutiny for some
time. We also wish to foster confidence that we have not introduced a deliberately
weak S-box.

3.2 The Function wf  used in tw, {16,32}w ∈

In t16 and t32, the wf  function has three parts, as shown in Figure 3.
The input to the S-box should depend on every bit of 0r  and 16r , so the eight

most significant bits (MSBs) of 0 16( )r r+  are extracted to be the input (reference) to
the 256 entry S-box. We call this operation most significant byte extraction, and
denote the operation by MSBE.

The S-boxes for t16 and t32, denoted 16SB  and 32SB respectively, are a
combination of the Skipjack S-box and an S-box tailor-designed by the Information
Security Research Centre (ISRC) at the Queensland University of Technology [6].
The eight MSBs of the output of 16SB  and 32SB  are defined by the Skipjack S-box.
The remaining ( 8)w −  least significant bits (LSBs) of the output of 16SB  and 32SB
are defined by the S-boxes constructed by the ISRC. These S-boxes were constructed
as ( 8)w −  mutually uncorrelated, balanced and highly non-linear single bit functions.
The S-boxes 16SB  and 32SB  can be found at http://www.home.aone.net.au/qualcomm.

The output of ( )wf X , {16,32}w ∈ , is determined as follows. Following MSBE,
the most significant byte of X becomes the input to wSB . The most significant byte is
then removed from X, and this value is XORed with the w-bit output of the S-box.
Thus, the most significant byte of the output of wf , {16,32}w ∈ , is the output of the
Skipjack S-box, while the least significant ( 8)w −  bits are obtained by XORing the
( 8)w −  bits of the output of wSB  with the ( 8)w −  least significant bits of the input.
The function wf  is defined this way to ensure that it is a highly non-linear

                                                       
3 See FIPS 185- Escrowed Encryption Standard at the following web page:
http://www.itl.nist.gov/fipspubs/fip185.htm.
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permutation, while using only a single, small S-box. The function 8f  can be
considered of the same form, noting that 8 0w − = .

w-bit Input

8 bits (w-8) bits

Most Significant Byte Extraction

    S-box wSB

Skipjack
S-box

ISCR, QUT
 S-box

8 bits (w-8) bits

w-bit Output

Figure 3. The function wf  used in tw, {16.32}w ∈

3.3 Guess-and-Determine Attacks

Guess-and-Determine (GD) attacks are based on the assumption that the attacker
knows part of a sequence of NLF outputs, and the attacker knows how many times the
LFSR has been cycled between the NLF outputs. The stuttering destroys knowledge
about the number of LFSR cycles; to account for this an attacker must assume the
value of the dibits (two bit blocks) used to control the stuttering. The resulting attack
is called an assume-guess-and-determine (AGD) attack. AGD attacks on SOBER-
family stream cipher have been observed by Blackburn et al. [1], Bleichenbacher and
Patel [3], Bleichenbacher, Patel and Meier [4] and Hawkes [10]. The two latter papers
present attacks against the structure used in SOBER-II, S16 and the t-class ciphers;
the attacks from both papers are of equal complexity. In this section, we focus only on
the GD attack component of an attack, AGD attacks are discussed following the
description of the stuttering.

Observation 1. Given the values of any three of the LFSR stream words
4 15 17, , ,n n n ns s s s+ + + , equation (2.3) can be used to determine the value of the remaining

word. n
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Observation 2. Suppose an attacker knows the value of tv . Given the values of Konst
and any four of the LFSR stream words 1 2 7 14 17, , , ,n n n n ns s s s s+ + + + + , equation (3.2) can
be used to determine the value of the remaining LFSR stream word from the value of

nv . n

Suppose an attacker observes a portion of the NLF stream and knows the relative
juxtaposition of the NLF words. The basic format of a GD attack is as follows:

1. Guess Konst and some LFSR stream words.
2. Determine a full state of the register by determining further LFSR stream

words through applications of Observations 1 and 2.
3. Test if this guess is correct by producing more of the NLF stream and

comparing this with the observed NLF stream. If the NLF streams are not the
same, then return to Stage 1.

Example 1. The GD component of the attack of Bleichenbacher, Patel and Meier [4]
against SOBER-II also applies to the t-class. Suppose that an attacker observes an
NLF stream which contains the values of n iv + , { 1,0,1,2,4,9,11,12,14}i ∈ − , for some
n . The GD attack proceeds as follows:

1. Guess the values of Konst and n is + , {1,5,6,10,14,15,16,21,25}i ∈ ; a total of
10 words.

2. Determine the values of n is + , 0 16i≤ ≤ , using the process shown in Table 4.
Table 4 uses the following notation. If applying Observation 1 using values
for , ,n a n b n cs s s+ + +  to determine n ds +  then we write this as , ,a b c d→ . If
applying Observation 2 using n xv +  and values for , , ,n a n b n c n ds s s s+ + + +  and
Konst to determine n es +  then we write this as , , , xa b c d e→ . Following this
stage the attacker has determined the state of full register: n is + , 0 16i≤ ≤ .

3. Test if the guess is correct by generating the NLF stream (using this register
state) and comparing with other NLF stream words. If the NLF streams are
not the same, then return to Stage 1. n

Action Action Action
1 1,5,16 18→ 9 16,27,29 12→ 17 13,17,28 30→
2 6,10,21 23→ 10 12,23,25 8→ 18 15,19,30 32→
3 10,14,25 27→ 11 1112,18,25,28 13→ 19 01,2,14,17 7→
4 45,6,18,21 11→ 12 11,6,11,16 0−→ 20 1,8,15 3→
5 910,11,16,18 26→ 13 1213,14,26,29 19→ 21 3,7,18 20→
6 11,15,26 28→ 14 8,19,21 4→ 22 23,4,16,19 9→
7 1415,16,21,28 31→ 15 0,4,15 17→
8 14,18,31 29→ 16 6,17,19 2→

Table 4. The “determining” steps in the GD attack on the t-class ciphers.
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The complexity of an attack is proportional to the number of guesses. If ( 1)x −
LFSR stream words and the value of Konst are guessed in the Stage 1, then the
number of possible guesses is 16(2 )x . The GD attack in Example 1 has a complexity
of 102 w ; for example, the attack on t16 has a complexity of 1602 . This is the lowest
known complexity for a GD attack on a t-class cipher. In some GD attacks, a “divide-
and-conquer” approach can be used to reduce the complexity. This is achieved by
guessing Konst and a subset of y LFSR words ( 1y x< − ), determining as many LFSR
stream words as possible, and using these LFSR stream words to determine an NLF
output which can be compared against the observed NLF stream. If the NLF output
disagrees with the observed NLF output then this indicates that the guess (for Konst
and the subset of y LFSR stream words) is incorrect. The attacker then eliminates
such guesses, and only proceeds to guess the remaining ( 1)x y− −  words if the NLF
output agrees. This process reduces the overall number of guesses. Such an approach
was used to find a GD attack against unstuttered SOBER-II with a complexity of 272

[10]; this GD attack on the t-class ciphers would have a complexity of 102 w .

3.4 Extended Guess-and-Determine Attacks

Extended guess-and-determine (EGD) attacks use the same approach as GD attacks,
however EGD attacks use additional linear relationships between LFSR stream words
that result from the linear feedback function. While GD attacks have been known
since late 1998, EGD attacks have only been noticed since August 1999, so less is
known about these attacks.

Consider the polynomial ( )wp x  in equation (2.4) corresponding to the feedback

function in equation (2.3). Let 
0

( ) i
ii

q x xγ≥= ∑  be some polynomial over (2 )wGF

and the product
1

1 1 0( ) ( ) ( ) k k
w k kr x p x q x x x xδ δ δ δ−

−= ⋅ = + + + +L , (3.1)

where addition and multiplication is still over (2 )wGF . The polynomial product ( )r x
corresponds to the following relationship between LFSR stream words:

1 1 1 1 0k t k k t k t ts s s sδ δ δ δ+ − + − += + + +L .

In particular, this equation gives a relationship between those values of t is +  such that
0iδ≠ .

Example 2. Consider the polynomial ( )wp x . If we set ( ) ( )wq x p x=  then the product

is 2 34 2 30 8 2( ) ( )wr x p x x x xα β= = + + + . This polynomial indicates that
2 2

34 30 8t t t ts s s sα β+ + += + + ; which gives a relationship between the LFSR stream
words t is + , {0,8,30,34}i ∈ . n

EGD attacks are GD attacks that, in addition to exploiting the NLF and LFSR
feedback function, also exploit these extra linear relationships in the same way that
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Observation 1 exploits the feedback function in a GD attack. We are only concerned
with linear relationships that will give information that could not have been derived
using the original polynomial in equation (2.4). This motivates the following
definitions.

Definition 1. A polynomial is exploited if it is used (as in Observation 1) to determine
an LFSR stream word from the other LFSR stream words. n

Definition 2. Let 1( ), , ( )ar x r xK  be polynomials over (2 )wGF . Suppose the
polynomial ( )r x  represents a linear relationship between t is + , i S∈  for some set S.
Then ( )r x  is said to be resolvable with respect to 1( ), , ( )ar x r xK  if it is possible to
determine t js +  from { , \ { }}t is i S j+ ∈  by exploiting the polynomials 1( ), , ( )ar x r xK . n

Example 3. Consider ( ) ( ) ( )wr x p x q x= ⋅  in a t-class cipher where 2( )q x x α= + .

When expanded, 19 2 15 6 4 2( )r x x x x x xα α β αβ= + + + + + , which is a relationship
between the LFSR stream words t is + , {0,2,4,6,15,19}i ∈ . However, ( )r x  is
resolvable with respect to ( )wp x . For any {0,2,4,6,15,19}j ∈ , it is possible to
determine t js +  from the remaining values of t is +  using the relationship between

4 15 17{ , , , }t t t ts s s s+ + +  and 2 6 17 19{ , , , }t t t ts s s s+ + + + . n

Example 4. The polynomial 2( ) ( )wr x p x=  in the t-class is not resolvable with respect
to ( )p x . n

A set of polynomials such that no polynomial is resolvable with respect to the
others is called an EGD basis. The first step in looking for EGD attacks is to find an
EGD basis: in particular looking for polynomials that are sparse (that is, they provide
a relationship between only a few words). Then we must find the best EGD attack
(that is, the attack with the lowest complexity) using this EGD basis. Recall that an
EGD attack uses not only the EGD basis, but the NLF equation as well. The following
example demonstrates why EGD attacks must be considered as a serious threat.

Example 5. We examined a SOBER-like cipher with an LFSR polynomial
13 4 1( )wp x x x x λ= + + + , and an NLF of the form 5 10 11( , , , )t t t t tv f s s s s+ + += . The best

GD attack against the 16-bit word version of this cipher has a complexity of 1282
(ignoring stuttering). However, there also exist EGD attacks, using ( )wp x and 2 ( )wp x
as an EGD basis, which have a complexity of only 1122  (ignoring stuttering). n
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3.2.1 EGD Attacks on the t-class Ciphers

To date, we have found the following EGD basis for the t-class ciphers:
17 15 4

1

2 34 2 30 8 2
2

2 4
3

23 2 19 15 10 8 2 2 2

( ) ( ) ,

( ) ( ) ,

( ) ( ) ( )( )

( ) .

w

w

w

r x p x x x x

r x p x x x x

r x p x x x

x x x x x x

α β
α β

α β
α β αβ β αβ

= = + + +
= = + + +
= ⋅ + +
= + + + + + + +

Every possible EGD attack, using this EGD basis, has been tested. None of these
EGD attacks has a complexity less than that of the best known GD attacks which have
a complexity of 102 w  (when stuttering is ignored). This is not concrete proof of the
resistance to EGD attacks, as it is still uncertain whether there are further linear
relationships that are unresolvable with respect to this basis. We will continue to look
for further linear relationships. We estimate that we have checked approximately half
of the possible products of ( )wp x  that have degree less than or equal to 34; all have
thus far proven to be resolvable with respect to the EGD basis above. We do not
expect to find products of degree greater than 34 that are useful in an EGD attack.

We hope that in the near future we shall have found the complete EGD basis for
the products of degree less than or equal to 34, which will then allow us to be more
certain of the resistance of the t-class ciphers against every possible EGD attack. We
would also like to determine if products of degree greater than 34 can serve any useful
purpose in an EGD attack. However, at this stage, the best GD or EGD attacks have a
complexity of 102 w which is significantly large than the complexity of an exhaustive
key search ( 82 w ).

4  Stuttering the Non-Linear Output

It is easily conceivable that the state of the LFSR could be used to efficiently
reconstruct the state, particularly by a fast correlation attack. The task is made much
more difficult if some of the states are not represented in the output, in a way that is
difficult to predict (irregular decimation). This is the role of the stuttering in the t-
class ciphers. While the stuttering formed the most ad-hoc part of the design of
SOBER and SOBER-II, the stuttering has also been the source of least trouble in the
security analyses done. In updating the SOBER family to the t-class, various other
forms of decimation were considered. However, the original stuttering still appears to
offer the best increase in security. Thus, the stuttering employed in the t-class is
derived from the stuttering used in SOBER and SOBER-II.

Stuttering is based on occasional words of nonlinear output being used to
determine the inclusion of other words in the output stream. When the generator is
started, the first NLF output (NLF stream word) is taken to be used as a stutter control
word (SCW). Each SCW is broken into pairs of bits called dibits, with the least
significant dibit being used first. The dibits provide the cipher with instructions
regarding how many times to cycle the LFSR, whether to output an NLF output, and
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how this value is included in the key stream. When the instruction from all the dibits
have been performed, the LFSR is cycled and the NLF output from the register forms
the next SCW.

There are four possible values for each dibit. The actions determined by the dibits
are listed in Table 5. In this table,  “C” denotes cycling the LFSR, while “O: x”
denotes obtaining the NLF outputting, XORing this value with x and including this in
the key stream. The values of wε  are defined as

8 16 320x69, 0x6996, 0xC5963A69ε ε ε= = = , and wε′ is the bit-wise complement
of wε , {8,16,32}w ∈ .

Dibit (0,0) (0,1) (1,0) (1,1)
Action C C, O: wε , C C, C, O: 0 C, O: wε′

Table 5. The actions defined by the dibits in the stutter control word of tw,
{8,16,32}w ∈

4.1 Cycle Length

The probabilistic nature of the stuttering means that we cannot accurately determine
the cycle lengths for the key stream. The LFSR and NLF streams have cycle length

( )172 1w − . Soon after the LFSR outputs repeat, one of the SCWs will repeat, at which

time the key stream will also begin repeating. The instructions for a random dibit
result in a key stream being generated with probability 3

4 , so a random SCW outputs

and average of 3
8
w  key stream words. Furthermore, a random dibit contains

instructions for an average of 3
2  LFSR cycles, so for each SCW there are an average

of 3 3
2 2 41 1w w⋅ + = +  LFSR cycles. Therefore, the number of key stream words

generated before the key stream repeats is approximately

( ) ( ) ( )
3

17 17 178 1
23

4

3
2 1 2 1 2 1

1 6 8
w w ww w

w w
⋅ + = ⋅ + ≈ ⋅ +

+ +
.

For example, the cycle length of t8 is around 2135.

4.2 The Timing Distribution

The stuttering increases the security of the t-class ciphers at small cost by introducing
uncertainty regarding the number of cycles of the LFSR between successive key
stream words. However, the stuttering also introduces uncertainty in the amount of
processing required to generate a given length of key stream.

The timing is directly proportional to the amount of processing required. The
amount of processing required to cycle the LFSR has been found to be approximately
equal to the amount of processing required for obtaining an NLF output. The amount
of processing required for the stuttering is dominated by the processing required to
cycle the LFSR and obtain the NLF output that becomes the SCW, from which the
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dibits are read. Therefore, amount of processing can be adequately described in terms
of processing units, where a processing unit is equivalent to the processing required to
either cycle the LFSR or obtain an NLF output. We make the following remarks
regarding the number of processing units required to generate n key stream words (the
analysis is found in the Appendix).

• The average number of processing units is approximately ( )163 w n+ .

• For large n, the number of processing units exceeds the probabilistic
maximum ( ) ( )16 6.203 2.65w wn n+ + +  with probability less than 410− .

Example 6. Table 6 lists the average value and probabilistic maximum for the number
of process units of t16 required for generating n key stream words, for some large
values of n. n

Number of n : Number of Key Stream Words
Processing Units 256 512 1024 2500

Average 853.3 1706.7 3413.3 8333.3
Probabilistic Maximum 902.0 1775.5 3510.6 8485.3
% Diff Max. /Average 5.7 4.0 2.8 1.8

Table 6. The average value and probabilistic maximum for the number of
process units of t16 required for generating n key stream words, for some
large values of n. The final row lists the difference between the
probabilistic maximum and the average, given as a percentage of the
average.

4.3 Assume-Guess-and-Determine Attacks

GD attacks and EGD attacks rely on the attacker NLF words that occur in certain
positions relative to each other. Hereafter we shall combine both attacks under the
heading of GD attacks. A result of the stuttering is that the words from the key stream
correspond to certain positions relative to each other only if the dibits in the stutter
control word(s) assume certain values.

Example 7 The GD attack of Bleichenbacher, Patel and Meier [4] (described in
Example 1) requires the attacker to know the NLF words n iv + ,

{ 1,0,1,2,4,9,11,12,14}i ∈ − , for some 0n ≥ . For the attack on SOBER-II (which also
applies to t8) the authors of [4] chose to make the following assumptions:
• 1 201011111nv − =  is an SCW, which implies that the words n iv + , {0,1,2,4}i ∈

are put into the key stream and 6nv +  is the next SCW.
• 6 211110101nv + = , which implies that the words n iv + , {7,9,11,12}i ∈  are put into

the key stream and 13nv +  is the next SCW.
• The least significant dibit of 13nv +  is 01.
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If the attacker has assumed the values of the SCWs correctly, then the attacker has all
the NLF stream words required for performing the GD attack. Note that the
assumptions regarding the SCWs give the attacker extra words in the NLF stream. n

To perform a GD attack, the attacker must assume that the stutter control word(s)
are such that the key stream outputs the maximum number of required NLF stream
words. If the stutter control word(s) have the correct value, then the first key stream
word outputted after first stutter control word is said to be suitable. After assuming
that some key stream word jz  is suitable, the attacker performs the GD attack using
corresponding values from the observed key stream. If the GD attack is able to find a
register state that produces the correct stream, then the attack is successful. Otherwise,

jz  must have been unsuitable, so the attacker then assumes that 1jz +  is suitable and
attempts a GD attack using the corresponding key stream words. The attacker
continues until a correct register state is found. Such an attack is called an assume-
guess-and-determine (AGD) attack.

Assume-Guess-and-Determine Attack

1. Set 0j = .
2. Assume that jz  is suitable, and determine the NLF stream words that would

correspond to the following key stream words.
3. If a guess-and-determine or extended-guess-and-determine attack (based on

these NLF stream words) determines a correct value for the state that reproduces
the key stream, then the attack is complete. Otherwise, increment j and return to
Stage 2, as jz  is not suitable.

The data complexity of an AGD attack is the product of the complexity of the GD
attack, with the number of key stream words that are assumed to be suitable before a
suitable key steam word is found. The latter factor is inversely proportional to the
probability of a random key stream word being suitable. Let jz  be a random key
stream word at some point in the key stream. As discussed above, an SCW outputs an
average of 3

8 w key stream words per SCW, so the probability that jz  is the first key

stream word following an SCW is 8
3w . Assuming that jz  is the first key stream word

following an SCW, the probability that jz  is suitable is 22 x−  where x is the number of

SCW dibits that have been specified in the AGD attack. Thus, the probability that jz

is suitable is 28
3 2 x

w
−⋅ .

Example 8. Consider the AGD attack on t8 given in Example 7. The probability that

jz  is the first key stream word following an SCW is 8 1
3 8 3⋅ = . The attack specifies 9

SCW dibits, so the probability that jz  is suitable is 182− , assuming that jz  is the first

key stream word following an SCW. Thus, the probability that jz  is suitable is
181

3 2−⋅ . The data complexity to be inversely proportional to this value: around
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183 2⋅ key stream words or 786 kilobytes. For each key stream word jz , a GD attack

with complexity 10 802 2w =  is performed for each key stream word, so the total
complexity of the AGD attack on t8 is approximately 18 80 993 2 2 2⋅ ⋅ > . n

Similar AGD attacks can be defined for t16 and t32.

5 Keying the Stream Cipher

5.1 Byte Ordering Considerations

t16 and t32 utilise native processor operations on integer data items, but are expected
to accept keys which are simply strings of bytes, and to produce a stream of bytes as
output for encryption purposes. This means that a translation between native byte
ordering and external byte ordering is necessary to ensure compatibility between
implementations running on different processors. Since all Internet standards are
defined using “big-endian” byte ordering, in which the most significant byte of a
multi-byte quantity appears first in memory, this is what is chosen for t16 and t32. On
“little-endian” machines, the words of the output stream must be byte reversed before
being XORed into the buffer, respectively.

Note that it is simple to define ciphers that are exactly equivalent to t16 and t32
except that they are “little-endian”. These ciphers would share all the security aspects
of the originals, but would execute a bit more efficiently on such CPUs.

Byte ordering considerations are ignored in the rest of the paper, but should be
kept in mind.

5.2 Key Loading

The t-class ciphers are designed (primarily) for applications in wireless telephony. In
such applications, packets may be lost due to noise, synchronisation between the
Mobile Station (cellphone) and the Base Station may be lost due to signal reflection,
or a particular call might be handed off to a different base station as the phone zooms
along a freeway. Any loss of synchronisation with a stream cipher is disastrous. One
solution, used in the GSM system, is to have each encrypted frame implicitly
numbered with a frame key, and the stream cipher re-keyed for each frame with the
secret session key and the frame key. The frame key is public and consists of a 4-octet
unsigned integer. SOBER, SOBER-II and S16 were designed to support such a two
tier keying structure; S32 was not. All t-class ciphers have been designed to support
the two-tiered keying structure in addition to the standard mode of operation. The
cipher is keyed and re-keyed using two operations:

• Include( X ); adds the word X to 15r  modulo 2w .
• Diffuse(); cycles the register and XORs the output of the NLF with 4r .

The main function used to load the session key and frame key is the
Loadkey(k[],keylen) operation, where “k[]” is an array containing the “keylen” bytes
of the key with one byte stored in each entry of “k[]”.   The Loadkey() operation uses
the values in “k[]” to alter the current values in the register as follows:
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Loadkey(k[],keylen)
1. Define keylen ( /8)kwl w= ÷  : the length of the key in words. Partition “k[]”

into kwl w-bit words and store in an array “kw[]”.
• In t8, kw[ ] k[ ]i i= , 0 keylen-1i≤ ≤ .
• In t16, this partitioning is performed as follows:

keylen ≡0 mod 16: kw[0] = (k[0], k[1]), kw[1] = (k[2], k[3]), …  ,
1 1i kwl≤ ≤ − , kw[ ] (k[2 ], k[2 1])i i i= + .

keylen ≡1mod 16: kw[0] = (0, k[0]), kw[1] = (k[1], k[2]), …  ,
1 1i kwl≤ ≤ − , kw[ ] (k[2 1], k[2 ])i i i= − .

• In t32, this partitioning is performed as follows:
keylen ≡0 mod 32: kw[0] = (k[0], k[1], k[2], k[3]), … ,

1 1i kwl≤ ≤ − , kw[ ] (k[4 ], k[4 1], k[4 2], k[4 3])i i i i i= + + + .
keylen ≡1 mod 32: kw[0] = (0, 0, 0, k[0]), …  ,

1 1i kwl≤ ≤ − , kw[ ] (k[4 3], k[4 2], k[4 1], k[4 ])i i i i i= − − − .
keylen ≡2 mod 32: kw[0] = (0, 0, k[0], k[1]), … ,

1 1i kwl≤ ≤ − , kw[ ] (k[4 2], k[4 1], k[4 ], k[4 1])i i i i i= − − + .
keylen ≡3 mod 32: kw[0] = (0, k[0], k[1], k[2]), … ,

1 1i kwl≤ ≤ − , kw[ ] (k[4 1], k[4 ], k[4 1], k[4 2])i i i i i= − + + .
2. For each i , 0 1i kwl≤ ≤ − , Include(kw[ i ]) and apply Diffuse().4

3. Include(keylen).
4. Apply Diffuse() 17 more times. n

The 17 applications of Diffuse() are designed to ensure that every bit of input affects
every bits of the resulting register state in a nonlinear fashion, as discussed below.
The key length is included to ensure that there are no equivalent session keys.

A t-class cipher is initially keyed using a secret, t-byte session key
[0], , [ 1]K K t −K  as follows:

1. The 17 words of state information are initialised to the first 17 Fibonacci
numbers. There is no particular significance to these numbers being used,
except for the ease of generating them. The value of Konst is set to the all
zero word.

2. The cipher applies Loadkey(K[],t) which includes the session key bytes and
session key length into the register, and diffuses the information throughout
the register.

3. The LFSR is cycled and Konst is set to the value of the NLF output.

If the cipher is going to be re-keyed or the variable S-box constructed, then the 17
word state of the register, 0 16, ,r rK , (which we call the initial key state) can be saved
at this point for later use, and the session key discarded. However, for shorter session
keys, the session key could be saved and this procedure repeated as necessary, trading
additional computation time for some extra memory.

                                                       
4 Note that each Include() in Step 2 is followed by a Diffuse().
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If the cipher does not use the two-tiered keying structure, then the cipher
produces a key stream with the register starting in the initial key state. That is, the
initial key state is used as the initial state. However, if the cipher uses a frame key, the
cipher first resets the register state to the saved initial key state, and then loads the 4-
byte frame key [0], , [3]frame frameK  using Loadkey(frame[],4). The state of the
register following the re-keying is taken as the initial state, and the cipher produces a
key stream with the register starting in this state.

5.3 Analysis of the t-class Key Loading

In [4], Bleichenbacher, Patel and Meier discuss weaknesses in frame keying in
SOBER-II (assuming correctly that analogous problems appeared in S16). In this
section we address some of the observations and demonstrate how changes made to
arrive at the t-class eliminate these (and other) weaknesses.

Section 5 of [4] is devoted to "Analysis of the Frames". It demonstrates that there
is correlation between related frames generated from the same initial key material.
However we note that no actual attack based on this correlation is proposed; while
some of the register elements display correlation, other elements do not, and the fact
that the nonlinear function combines many elements, and that the linear feedback
function continues mixing the correlated and uncorrelated elements suggests that such
an attack might be difficult. Nevertheless, we agree with the conclusion that the
correlation is undesirable.

A large contributor of the correlation was in fact due to a bug in our “sliding
window” implementation of SOBER-II. The sliding window implementation
effectively contains two full registers. In such an implementation it is essential to
XOR the NLF output into TWO positions in the sliding window during the Diffuse()
operation. The original implementation only XORed the NLF output into one
position, which resulted in incorrect diffusion.

However, aside from this bug, there has proven to be insufficient Diffuse()
operations after the session key or frame key had been included in the register in
SOBER-II and S16. This resulted in a correlation between the session key or frame
key and the initial state, as shown in the following example.

Example 9. For a set of 1000 random session keys, the initial states that result from
loading 0x000000frame ab=  and ' 256frame frame= +  were compared for XOR

and modular addition difference in SOBER-II.  For each word in the initial state a 2χ
test was used to give a measure of how close the distribution of XOR (modular
addition) differences are to a uniform distribution. If the distribution is uniform, then
the expected value of the 2χ  value is 255 (for more details see [4]). Table 7 lists our
results, after the implementation bug had been corrected. An asterisk “*” indicates
those values that demonstrate with 99% probability that the differences is not
uniform. Notice that several register words have large 2χ  values.

The same analysis was then applied to t8 with the new key loading (the analysis
of t8 used 3000 random session keys); the results are also given in Table 7. These
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results indicate that the new key loading eliminated the correlation that exists in the
key loading of SOBER-II and S16. n

The t-class uses an updated key loading which is stronger than that used in
SOBER-II and S16. The choice for the positions in the register to which information
is included ( 15r ) and the NLF output fed back ( 4r ) optimises the key loading
operations in terms of the speed at which key information diffuses throughout the
register. In SOBER-II, the nonlinear output was folded back into the register at
position 8. The reasoning was that this gave most rapid diffusion in the sense that
every word of the register depended on every word of the key material. However that
measure was only at the “first layer” – the dependence was (as can be seen) linear in
nature in some cases, and differential analysis exposes the above weakness. In
particular, because of the coincidences that the nonlinear tap at position 6 goes into
the “more linear” part of the nonlinear function, and the linear tap is at position 4,
there is a distinct odd/even behavior on the manner in which differences are
distributed, as is exploited in [4].

χ2 XOR difference χ2 arithmetic differenceWord of
Register SOBER-II t8 SOBER-II t8

0 859* 254 753* 254
1 339* 254 333* 254
2 258 255 259 255
3 254 255 255 254
4 255 255 255 254
5 256 255 255 255
6 255 254 256 254
7 255 254 255 254
8 254 255 253 254
9 21659* 255 4598* 255
10 1600* 253 481* 253
11 2815* 255 918* 255
12 282 254 262 254
13 344* 254 280 254
14 254 254 254 254
15 254 255 254 255
16 255 255 255 255

Table 7. The 2χ values for SOBER-II and t8.

If instead the nonlinear feedback is added at position 4 in the register, this
changes dramatically. The next register cycle includes nonlinear material in the top of
the register, which then goes through the less linear half of the nonlinear function, and
so on. This eliminates both the odd/even behavior mentioned above, and better
utilizes the "nonlinear half" of the nonlinear function.  However, the 11 Diffuse()
operations applied in SOBER-II do not provide sufficient diffusion of information,
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and there still remains a word 5r  which has a high 
2χ  value. The reason for this is

that the word has not been modified other than by direct addition of key material and
has had little influence from the NLF. Thus, there is a need to increase the number of
Diffuse() layers following inclusion of the key into the register. This number has been
increased to the minimum number of Diffuse() operations required to ensure that:

• Every bit of the initial state is a non-linear function of every bit of the key
and frame number.

• For any session key, the set of initial states corresponding to the frame keys
cannot be restricted to a linear subspace of 17

2( )wZ . If the initial states could
be restricted to a linear subspace, then the linearity of the LFSR would
ensure that every state of the register is always in some linear subspace, and
this may yield an attack.

• No word of the initial state is algebraically related to any subset of other
words.

Our analysis of the information propagation indicates that applying 17 Diffuse()
operations will ensure that these properties hold. The analysis in Example 9
demonstrates just two types of information which no longer propagate through key
loading into the initial state of the register.

6  Memory Requirements and Performance

The memory requirements of t-class ciphers are modest. Table 8 lists the memory
requirements and performance data collated to date. It may be possible to improve on
these figures.

RAM (bytes) Encryption Speed (Mbps)Cipher
Minimum Typical

ROM
(bytes) Unix 200 Pentium 233

t8 20 54 768 ~25 ~24
t16 38 105 2 560 ~44 ~25
t32 74 210 21 504 ~76 ~80

Table 8. Memory requirements and encryption speed for the t-class ciphers.
The encryption speed was measured on a 200MHz Sun Ultra Sparc and a
233MHz Pentium using unoptimised code for the typical implementation.
The speed was measure in megabits per second, by generating 10 key
streams, each one megabyte in length.

The “minimum” RAM requirements account for an array holding the state of the
register (17 words), a pointer to elements of the register (byte), a stutter control word
(word), and a stutter control counter (byte) that determines when to draw another
stutter control word from the NLF stream. The “typical” RAM requirements account
for a “sliding window” implementation of the LFSR5 (34 words), a pointer to

                                                       
5 See [17] for details.
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elements of the register (byte), a stutter control word (word), a stutter control counter
(byte) and an array for saving the initial key state (17 words). The ROM requirements
allocate memory for the field multiplication tables (used in the LFSR) and the non-
linear S-boxes (used in the NLF); all these arrays are fixed. The encryption speeds
were measured on a 200MHz Sun Ultra Sparc and a 233MHz Pentium using the
typical (sliding window) implementation. We note that the code used was not
unoptimised, so it will be possible to achieve higher encryption speeds.

7  Security Analysis

We have already discussed many aspects of the security offered by the various
components of the t-class ciphers. This section discusses how these components
combine to provide the necessary security.

An unknown plaintext attack on a stream cipher uses statistical abnormalities of
the output stream to recover plaintext, or to attack the cipher. The LFSR underlying
the t-class ciphers have very good statistical properties, which are preserved and
enhanced by the subsequent operations, so there is no significant risk of an unknown
plaintext attack. This analysis concentrates on vulnerability of t-class ciphers to
known-plaintext attacks.

Using (2 )wGF  instead of (2)GF  in the shift register has very little effect on the
properties of the register itself. Herlestam [11] shows that the individual bits of this shift
register go through the same sequence as if they were generated by a register over

(2)GF  with the same total state. The different bit positions in the words are merely
offsets in the output sequence of that LFSR. Therefore, recovering any linearly
independent set of enough bits, or linear functions thereof, from any known positions
in the output sequence yields the state of the register. It is no surprise then that the
security of these ciphers rests entirely upon the interaction of the nonlinear function
and the stuttering.

The carry bits in the word addition, and the nonlinear S-boxes account for most of
the nonlinear behavior in the function. As there are five quantities being added,
carries from lower bits add quite complicated functions of many other bits. If the
elements were simply added, there would be no carry input to the least significant bit
of the sum, which means that it is equivalent to XOR, and entirely linear. To defeat
this, the non-linear S-box brings in a bit with a high degree of non-linearity to disguise
the linearity of the least significant bit of the remaining sum. The S-boxes also add
significant non-linearity into other bits. XORing the Konst removes a significant
amount of commutation in the NLF that might have been exploited. The only
operations that commute are the additions of 1r  and 6r  with the output of wf .

The stuttering of the output provides a degree of uncertainty regarding the
position in the register sequence of particular outputs. Some simpler systems using
decimation have proven to be insecure. We have no convincing argument that this
particular scheme is secure. However, most decimation schemes use the linear state of
a register, while this one utilises a much more complicated, non-linear state (one of
the major benefits of a software implementation).
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Lastly, statistical tests have been used to bolster confidence that nothing entirely
stupid has been done. Outputs have been examined using CRYPT-X’98 [6], with no
anomalous results reported.

7.1  Regarding keys

For the t-class ciphers, there is a very small probability that a particular combination
of key and frame number will yield an initial register state which is entirely 0, and the
algorithm will cycle forever producing the same output. This could be fixed by
checking for that state and replacing it with one that cannot appear as the result of a
normal keying operation.

7.2 Attacks against Components of the t-class

Unknown plaintext attacks against stream ciphers work by using statistical
abnormalities (that is, differences from the distribution of a uniform random variable)
of the ciphertext stream to discover information about the plaintext, or to recover the
key or past or future values of the encryption stream. Because of the proven properties
of the LFSR in the t-class ciphers, we know that many aspects of the distribution of its
output are essentially ideal. The non-linear stage, and subsequently the stuttering, both
work to defeat affine and higher order relationships in the encryption stream. At this
time, no exploitable statistical characteristics are known or conjectured.

Known plaintext attacks against a stream cipher are based on exhaustive key
searches or exhaustive state searches, or using some other technique to predict past or
future output from the cipher. In the case of the t-class ciphers, these are thought to be
the same goal. The three major components (the LFSR, the NLF and the stuttering) all
contribute to the strength of the cipher in different, complementary, ways.

The LFSR itself is not cryptographically strong; its contribution is primarily to
provide the LFSR stream with good statistical properties. As mentioned above, the
individual bit positions of the LFSR act as if they are bits of a longer binary LFSR.

The NLF by itself is reasonably strong. The combination of the LFSR and NLF
provides sufficient resistance to GD and EGD attacks, as the best such attack has a
complexity of 102 w , significantly large than the complexity of 82 w  for an exhaustive
key search. However, fast correlation attacks are conjectured to recover the initial
state from a few thousand known octets of output from the nonlinear function. We are
aware of an attack which exploited the near-linearity of the least significant bits in the
original SOBER design [17] to recover the initial state from a few more than 136
consecutive octets. Both of these attacks are completely defeated by the stuttering, as
attempting to guess the positions in the output stream very quickly exceeds the
complexity of an exhaustive key search.

The stuttering by itself is not very strong. If it was applied to purely linear output,
then edit distance correlation attacks would appear to be applicable, although the large
state space makes them somewhat dubious in practice. A divide-and-conquer attack
that proceeds by guessing enough stutter control words to form enough linear
equations to be solved requires guessing only 17 dibit (34 bits). Both of these attacks
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are in turn frustrated by the non-linearity of the inputs, and are thought to be
infeasible. The fact that the stutter control words are derived from the non-linear
function contributes to the strength of the stuttering.

Finally, because there is a single, monolithic shift register in the t-class ciphers,
general divide-and-conquer attacks do not seem to be applicable.

8  Conclusion

The t-class ciphers are conservatively designed stream ciphers with a very small
software footprint, designed primarily for embedded applications in wireless
telephony. Software implementations of LFSRs over GF(2w) can be extremely
efficient, allowing well-tried design principles to be brought to bear in software
ciphers. The t-class improves on the original SOBER family by offering a stronger
non-linear filter and a more secure key loading process.

Appendix: The Distribution of Processing Units

Dibit (0,0) (0,1) (1,0) (1,1)

Processing units 1 3 3 2

Table 9. The numbers of processing units that correspond to the
possible dibits.

We examine the number of process units in two parts. The first part considers the
process units used when cycling the LFSR for the (0,0) dibits, and the process units
used when obtaining the SCW. The second part considers the number of process units
used in those dibits when a key stream word is generated.

Process Units due to the (0,0) Dibit and Obtaining the SCW

For a fixed n, let z denote the number of (0,0) dibits encountered before n key stream
words are generated. A total of ( )z n+  dibits are read during stuttering, so the number

of SCWs is ( ) /( / 2) 2( ) /z n w z n w+ = +       . Each SCW requires two processing
units: one unit for cycling the LFSR and one unit for obtaining the NLF output. Also,
each (0,0) dibit requires one process unit to cycle the LFSR. Thus, the total number of
process units due to the number of (0,0) dibits is 2 2( ) /z z n w+ ⋅ +  . The distribution

of z follows a negative binomial distribution6 with probabilities 3
4p =  and

1
41q p= − = ; that is, for 0x ≥ ,

                                                       
6 For more details, see any good textbook on statistics.
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1 1 3
Pr( )

4

n
n x

n x

n x n x
z x p q

x x +

+ − + −   = = ⋅ ⋅ = ⋅   
   

.

For small values of n this distribution can be determined explicitly to find suitable
probabilistic bounds on z, however we have not evaluated such bounds here. For large
values of n this distribution can be approximated by a normal distribution with mean

1
3z nµ = , variance 

( )
1

2 4 4
923

4

z n nσ = =  and standard deviation 2
3z nσ = .

Therefore, the average number of process units due to the (0,0) dibits and
obtaining the SCW is

8 16 161 1 1
3 3 3 3 32 2( ) / 2 / (1 )z z w wn w n n w n n nµ µ+ ⋅ + = + ⋅ + = +     : .

Furthermore, a property of the normal distribution is that
2Pr( 2.326 ) 10z zz µ σ −< + = , so the value of z can be upper bounded (with

probability 210− ) by 1
32.326 1.55z z n nµ σ+ = + . Consequently, the number of

process units due to the number of (0,0) dibits and obtaining the SCW is greater than

( )
( ) ( ) ( )

1 4
3 3

8 3.10 16 6.201 1
3 3 3

1.55 2 2 1.55 /

1.55 2 1 1.55 ,w w w w

n n n n w

n n n n n n

 + + ⋅ + 
+ + ⋅ + = + + +:

with a probability of only 210− .

Process Units Resulting When a Key Stream Word is Generated

For a fixed n, let T denote the number of (0,1) or (1,0) dibits encountered before n key
stream words are generated. The number of process units resulting from these dibits is
3 2( ) 2T n T n T+ − = + . The probability that a random non-zero dibit is (0,1) or (1,0)

is 2
3 , and the probability that a random non-zero dibit is (1,1) is 1

3 . Thus, the

distribution of T follows a binomial distribution7 with probabilities 2
3p =  and

1
31q p= − = . That is, for 0x ≥ ,

2
Pr( )

3

x
x n x

n

n n
T x p q

x x
−   = = ⋅ ⋅ = ⋅   

   
.

For small values of n this distribution can be determined explicitly to find a suitable
bound on T; we have not evaluated such bounds here. For large values of n this
distribution can be approximated by a normal distribution with mean 2

3T np nµ = = ,

                                                       
7 For more details see any good textbook on statistics.
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variance 2 2
2 9npq nσ = =  and standard deviation 2

3z nσ = . Therefore, the average
number of process units due to the dibits where a key stream word is generated is

82
3 32 2Tn n n nµ+ + = + = .

Furthermore, 2Pr( 2.326 ) 10T TT µ σ −< + = , so the values of T can be upper bounded

by 2
32.326 1.10T T n nµ σ+ = + . Consequently the total number of process units due

to the dibits where a key stream word is generated is greater than
82

3 32 1.10 1.10n n n n n+ + = + with a probability of only 210− .

Combining the Distributions

Combining the results in the two subsections, the average number of process units is

( ) ( )16 8 161
3 31 3w wn n n+ + = + .

The probabilistic maximum on the number of process units is

( ) ( ) ( ) ( ) ( )16 6.20 8 16 6.201
3 31 1.55 1.10 3 2.65w w w wn n n n n n+ + + + + = + + + .

This maximum is exceeded with probability 2 2 410 10 10− − −× = .
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